Distributional Diffusion Models with Scoring Rules Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2502.02483
Diffusion models generate high-quality synthetic data. They operate by defining a continuous-time forward process which gradually adds Gaussian noise to data until fully corrupted. The corresponding reverse process progressively "denoises" a Gaussian sample into a sample from the data distribution. However, generating high-quality outputs requires many discretization steps to obtain a faithful approximation of the reverse process. This is expensive and has motivated the development of many acceleration methods. We propose to accomplish sample generation by learning the posterior {\em distribution} of clean data samples given their noisy versions, instead of only the mean of this distribution. This allows us to sample from the probability transitions of the reverse process on a coarse time scale, significantly accelerating inference with minimal degradation of the quality of the output. This is accomplished by replacing the standard regression loss used to estimate conditional means with a scoring rule. We validate our method on image and robot trajectory generation, where we consistently outperform standard diffusion models at few discretization steps.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2502.02483
- https://arxiv.org/pdf/2502.02483
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407186801
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407186801Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2502.02483Digital Object Identifier
- Title
-
Distributional Diffusion Models with Scoring RulesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-04Full publication date if available
- Authors
-
Valentin De Bortoli, Alexandre Galashov, J. Swaroop Guntupalli, Guangyao Zhou, Kevin P. Murphy, Arthur Gretton, Arnaud DoucetList of authors in order
- Landing page
-
https://arxiv.org/abs/2502.02483Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2502.02483Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2502.02483Direct OA link when available
- Concepts
-
Diffusion, Econometrics, Computer science, Economics, Thermodynamics, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407186801 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2502.02483 |
| ids.doi | https://doi.org/10.48550/arxiv.2502.02483 |
| ids.openalex | https://openalex.org/W4407186801 |
| fwci | |
| type | preprint |
| title | Distributional Diffusion Models with Scoring Rules |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12011 |
| topics[0].field.id | https://openalex.org/fields/33 |
| topics[0].field.display_name | Social Sciences |
| topics[0].score | 0.5336999893188477 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3317 |
| topics[0].subfield.display_name | Demography |
| topics[0].display_name | Insurance, Mortality, Demography, Risk Management |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C69357855 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5921759009361267 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q163214 |
| concepts[0].display_name | Diffusion |
| concepts[1].id | https://openalex.org/C149782125 |
| concepts[1].level | 1 |
| concepts[1].score | 0.4213532507419586 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[1].display_name | Econometrics |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4156843423843384 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C162324750 |
| concepts[3].level | 0 |
| concepts[3].score | 0.2803223133087158 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[3].display_name | Economics |
| concepts[4].id | https://openalex.org/C97355855 |
| concepts[4].level | 1 |
| concepts[4].score | 0.13330036401748657 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[4].display_name | Thermodynamics |
| concepts[5].id | https://openalex.org/C121332964 |
| concepts[5].level | 0 |
| concepts[5].score | 0.0932302176952362 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[5].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/diffusion |
| keywords[0].score | 0.5921759009361267 |
| keywords[0].display_name | Diffusion |
| keywords[1].id | https://openalex.org/keywords/econometrics |
| keywords[1].score | 0.4213532507419586 |
| keywords[1].display_name | Econometrics |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.4156843423843384 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/economics |
| keywords[3].score | 0.2803223133087158 |
| keywords[3].display_name | Economics |
| keywords[4].id | https://openalex.org/keywords/thermodynamics |
| keywords[4].score | 0.13330036401748657 |
| keywords[4].display_name | Thermodynamics |
| keywords[5].id | https://openalex.org/keywords/physics |
| keywords[5].score | 0.0932302176952362 |
| keywords[5].display_name | Physics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2502.02483 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2502.02483 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2502.02483 |
| locations[1].id | doi:10.48550/arxiv.2502.02483 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2502.02483 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5050614717 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7163-5391 |
| authorships[0].author.display_name | Valentin De Bortoli |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | De Bortoli, Valentin |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5067400056 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Alexandre Galashov |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Galashov, Alexandre |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5009263663 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0677-5590 |
| authorships[2].author.display_name | J. Swaroop Guntupalli |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Guntupalli, J. Swaroop |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5076644778 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0809-5799 |
| authorships[3].author.display_name | Guangyao Zhou |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhou, Guangyao |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5032986126 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8819-7834 |
| authorships[4].author.display_name | Kevin P. Murphy |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Murphy, Kevin |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5004160420 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-3169-7624 |
| authorships[5].author.display_name | Arthur Gretton |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Gretton, Arthur |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5091677854 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-7662-419X |
| authorships[6].author.display_name | Arnaud Doucet |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Doucet, Arnaud |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2502.02483 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Distributional Diffusion Models with Scoring Rules |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12011 |
| primary_topic.field.id | https://openalex.org/fields/33 |
| primary_topic.field.display_name | Social Sciences |
| primary_topic.score | 0.5336999893188477 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3317 |
| primary_topic.subfield.display_name | Demography |
| primary_topic.display_name | Insurance, Mortality, Demography, Risk Management |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2502.02483 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2502.02483 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2502.02483 |
| primary_location.id | pmh:oai:arXiv.org:2502.02483 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2502.02483 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2502.02483 |
| publication_date | 2025-02-04 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 10, 30, 34, 50, 111, 142 |
| abstract_inverted_index.We | 69, 145 |
| abstract_inverted_index.at | 162 |
| abstract_inverted_index.by | 8, 75, 130 |
| abstract_inverted_index.is | 58, 128 |
| abstract_inverted_index.of | 53, 65, 81, 90, 94, 106, 121, 124 |
| abstract_inverted_index.on | 110, 149 |
| abstract_inverted_index.to | 19, 48, 71, 100, 137 |
| abstract_inverted_index.us | 99 |
| abstract_inverted_index.we | 156 |
| abstract_inverted_index.The | 24 |
| abstract_inverted_index.and | 60, 151 |
| abstract_inverted_index.few | 163 |
| abstract_inverted_index.has | 61 |
| abstract_inverted_index.our | 147 |
| abstract_inverted_index.the | 37, 54, 63, 77, 92, 103, 107, 122, 125, 132 |
| abstract_inverted_index.They | 6 |
| abstract_inverted_index.This | 57, 97, 127 |
| abstract_inverted_index.adds | 16 |
| abstract_inverted_index.data | 20, 38, 83 |
| abstract_inverted_index.from | 36, 102 |
| abstract_inverted_index.into | 33 |
| abstract_inverted_index.loss | 135 |
| abstract_inverted_index.many | 45, 66 |
| abstract_inverted_index.mean | 93 |
| abstract_inverted_index.only | 91 |
| abstract_inverted_index.this | 95 |
| abstract_inverted_index.time | 113 |
| abstract_inverted_index.used | 136 |
| abstract_inverted_index.with | 118, 141 |
| abstract_inverted_index.{\em | 79 |
| abstract_inverted_index.clean | 82 |
| abstract_inverted_index.data. | 5 |
| abstract_inverted_index.fully | 22 |
| abstract_inverted_index.given | 85 |
| abstract_inverted_index.image | 150 |
| abstract_inverted_index.means | 140 |
| abstract_inverted_index.noise | 18 |
| abstract_inverted_index.noisy | 87 |
| abstract_inverted_index.robot | 152 |
| abstract_inverted_index.rule. | 144 |
| abstract_inverted_index.steps | 47 |
| abstract_inverted_index.their | 86 |
| abstract_inverted_index.until | 21 |
| abstract_inverted_index.where | 155 |
| abstract_inverted_index.which | 14 |
| abstract_inverted_index.allows | 98 |
| abstract_inverted_index.coarse | 112 |
| abstract_inverted_index.method | 148 |
| abstract_inverted_index.models | 1, 161 |
| abstract_inverted_index.obtain | 49 |
| abstract_inverted_index.sample | 32, 35, 73, 101 |
| abstract_inverted_index.scale, | 114 |
| abstract_inverted_index.steps. | 165 |
| abstract_inverted_index.forward | 12 |
| abstract_inverted_index.instead | 89 |
| abstract_inverted_index.minimal | 119 |
| abstract_inverted_index.operate | 7 |
| abstract_inverted_index.output. | 126 |
| abstract_inverted_index.outputs | 43 |
| abstract_inverted_index.process | 13, 27, 109 |
| abstract_inverted_index.propose | 70 |
| abstract_inverted_index.quality | 123 |
| abstract_inverted_index.reverse | 26, 55, 108 |
| abstract_inverted_index.samples | 84 |
| abstract_inverted_index.scoring | 143 |
| abstract_inverted_index.Gaussian | 17, 31 |
| abstract_inverted_index.However, | 40 |
| abstract_inverted_index.defining | 9 |
| abstract_inverted_index.estimate | 138 |
| abstract_inverted_index.faithful | 51 |
| abstract_inverted_index.generate | 2 |
| abstract_inverted_index.learning | 76 |
| abstract_inverted_index.methods. | 68 |
| abstract_inverted_index.process. | 56 |
| abstract_inverted_index.requires | 44 |
| abstract_inverted_index.standard | 133, 159 |
| abstract_inverted_index.validate | 146 |
| abstract_inverted_index.Diffusion | 0 |
| abstract_inverted_index.diffusion | 160 |
| abstract_inverted_index.expensive | 59 |
| abstract_inverted_index.gradually | 15 |
| abstract_inverted_index.inference | 117 |
| abstract_inverted_index.motivated | 62 |
| abstract_inverted_index.posterior | 78 |
| abstract_inverted_index.replacing | 131 |
| abstract_inverted_index.synthetic | 4 |
| abstract_inverted_index.versions, | 88 |
| abstract_inverted_index."denoises" | 29 |
| abstract_inverted_index.accomplish | 72 |
| abstract_inverted_index.corrupted. | 23 |
| abstract_inverted_index.generating | 41 |
| abstract_inverted_index.generation | 74 |
| abstract_inverted_index.outperform | 158 |
| abstract_inverted_index.regression | 134 |
| abstract_inverted_index.trajectory | 153 |
| abstract_inverted_index.conditional | 139 |
| abstract_inverted_index.degradation | 120 |
| abstract_inverted_index.development | 64 |
| abstract_inverted_index.generation, | 154 |
| abstract_inverted_index.probability | 104 |
| abstract_inverted_index.transitions | 105 |
| abstract_inverted_index.accelerating | 116 |
| abstract_inverted_index.acceleration | 67 |
| abstract_inverted_index.accomplished | 129 |
| abstract_inverted_index.consistently | 157 |
| abstract_inverted_index.high-quality | 3, 42 |
| abstract_inverted_index.approximation | 52 |
| abstract_inverted_index.corresponding | 25 |
| abstract_inverted_index.distribution. | 39, 96 |
| abstract_inverted_index.distribution} | 80 |
| abstract_inverted_index.progressively | 28 |
| abstract_inverted_index.significantly | 115 |
| abstract_inverted_index.discretization | 46, 164 |
| abstract_inverted_index.continuous-time | 11 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |