Diversified Hidden Markov Models for Sequential Labeling Article Swipe
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.1109/tkde.2015.2433262
Labeling of sequential data is a prevalent meta-problem for a wide range of\nreal world applications. While the first-order Hidden Markov Models (HMM)\nprovides a fundamental approach for unsupervised sequential labeling, the basic\nmodel does not show satisfying performance when it is directly applied to real\nworld problems, such as part-of-speech tagging (PoS tagging) and optical\ncharacter recognition (OCR). Aiming at improving performance, important\nextensions of HMM have been proposed in the literatures. One of the common key\nfeatures in these extensions is the incorporation of proper prior information.\nIn this paper, we propose a new extension of HMM, termed diversified Hidden\nMarkov Models (dHMM), which utilizes a diversity-encouraging prior over the\nstate-transition probabilities and thus facilitates more dynamic sequential\nlabellings. Specifically, the diversity is modeled by a continuous\ndeterminantal point process prior, which we apply to both unsupervised and\nsupervised scenarios. Learning and inference algorithms for dHMM are derived.\nEmpirical evaluations on benchmark datasets for unsupervised PoS tagging and\nsupervised OCR confirmed the effectiveness of dHMM, with competitive\nperformance to the state-of-the-art.\n
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/tkde.2015.2433262
- OA Status
- green
- Cited By
- 25
- References
- 79
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W1675155851
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W1675155851Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/tkde.2015.2433262Digital Object Identifier
- Title
-
Diversified Hidden Markov Models for Sequential LabelingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2015Year of publication
- Publication date
-
2015-05-14Full publication date if available
- Authors
-
Maoying Qiao, Wei Bian, Richard Yi Da Xu, Dacheng TaoList of authors in order
- Landing page
-
https://doi.org/10.1109/tkde.2015.2433262Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1904.03170Direct OA link when available
- Concepts
-
Computer science, Hidden Markov model, Markov process, Markov chain, Markov model, Artificial intelligence, Machine learning, Mathematics, StatisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
25Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 5, 2023: 1, 2022: 2, 2021: 1, 2020: 3Per-year citation counts (last 5 years)
- References (count)
-
79Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W1675155851 |
|---|---|
| doi | https://doi.org/10.1109/tkde.2015.2433262 |
| ids.doi | https://doi.org/10.1109/tkde.2015.2433262 |
| ids.mag | 1675155851 |
| ids.openalex | https://openalex.org/W1675155851 |
| fwci | 1.63311584 |
| type | article |
| title | Diversified Hidden Markov Models for Sequential Labeling |
| awards[0].id | https://openalex.org/G5440256621 |
| awards[0].funder_id | https://openalex.org/F4320334704 |
| awards[0].display_name | |
| awards[0].funder_award_id | DP-120103730 |
| awards[0].funder_display_name | Australian Research Council |
| awards[1].id | https://openalex.org/G8405614816 |
| awards[1].funder_id | https://openalex.org/F4320334704 |
| awards[1].display_name | |
| awards[1].funder_award_id | LP-140100569 |
| awards[1].funder_display_name | Australian Research Council |
| awards[2].id | https://openalex.org/G5329554664 |
| awards[2].funder_id | https://openalex.org/F4320334704 |
| awards[2].display_name | |
| awards[2].funder_award_id | DP-140102164 |
| awards[2].funder_display_name | Australian Research Council |
| awards[3].id | https://openalex.org/G5659964068 |
| awards[3].funder_id | https://openalex.org/F4320334704 |
| awards[3].display_name | |
| awards[3].funder_award_id | FT-130101457 |
| awards[3].funder_display_name | Australian Research Council |
| biblio.issue | 11 |
| biblio.volume | 27 |
| biblio.last_page | 2960 |
| biblio.first_page | 2947 |
| topics[0].id | https://openalex.org/T11106 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9973999857902527 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Data Management and Algorithms |
| topics[1].id | https://openalex.org/T12205 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9941999912261963 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Time Series Analysis and Forecasting |
| topics[2].id | https://openalex.org/T11063 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9805999994277954 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1703 |
| topics[2].subfield.display_name | Computational Theory and Mathematics |
| topics[2].display_name | Rough Sets and Fuzzy Logic |
| funders[0].id | https://openalex.org/F4320334704 |
| funders[0].ror | https://ror.org/05mmh0f86 |
| funders[0].display_name | Australian Research Council |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7913874387741089 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C23224414 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5767195820808411 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q176769 |
| concepts[1].display_name | Hidden Markov model |
| concepts[2].id | https://openalex.org/C159886148 |
| concepts[2].level | 2 |
| concepts[2].score | 0.515105664730072 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q176645 |
| concepts[2].display_name | Markov process |
| concepts[3].id | https://openalex.org/C98763669 |
| concepts[3].level | 2 |
| concepts[3].score | 0.48870018124580383 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q176645 |
| concepts[3].display_name | Markov chain |
| concepts[4].id | https://openalex.org/C163836022 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4702067971229553 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q6771326 |
| concepts[4].display_name | Markov model |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4558478891849518 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.26239216327667236 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.10657492280006409 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C105795698 |
| concepts[8].level | 1 |
| concepts[8].score | 0.08483657240867615 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[8].display_name | Statistics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7913874387741089 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/hidden-markov-model |
| keywords[1].score | 0.5767195820808411 |
| keywords[1].display_name | Hidden Markov model |
| keywords[2].id | https://openalex.org/keywords/markov-process |
| keywords[2].score | 0.515105664730072 |
| keywords[2].display_name | Markov process |
| keywords[3].id | https://openalex.org/keywords/markov-chain |
| keywords[3].score | 0.48870018124580383 |
| keywords[3].display_name | Markov chain |
| keywords[4].id | https://openalex.org/keywords/markov-model |
| keywords[4].score | 0.4702067971229553 |
| keywords[4].display_name | Markov model |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.4558478891849518 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.26239216327667236 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.10657492280006409 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/statistics |
| keywords[8].score | 0.08483657240867615 |
| keywords[8].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.1109/tkde.2015.2433262 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S30698027 |
| locations[0].source.issn | 1041-4347, 1558-2191, 2326-3865 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1041-4347 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEEE Transactions on Knowledge and Data Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310320439 |
| locations[0].source.host_organization_name | IEEE Computer Society |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320439, https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | IEEE Computer Society, Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Transactions on Knowledge and Data Engineering |
| locations[0].landing_page_url | https://doi.org/10.1109/tkde.2015.2433262 |
| locations[1].id | pmh:oai:arXiv.org:1904.03170 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/1904.03170 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/1904.03170 |
| indexed_in | arxiv, crossref |
| authorships[0].author.id | https://openalex.org/A5101810682 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0990-5506 |
| authorships[0].author.display_name | Maoying Qiao |
| authorships[0].countries | AU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I114017466 |
| authorships[0].affiliations[0].raw_affiliation_string | , University of Technology, Sydney, 81 Broadway Street, Ultimo, NSW, Australia |
| authorships[0].institutions[0].id | https://openalex.org/I114017466 |
| authorships[0].institutions[0].ror | https://ror.org/03f0f6041 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I114017466 |
| authorships[0].institutions[0].country_code | AU |
| authorships[0].institutions[0].display_name | University of Technology Sydney |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | None Maoying Qiao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | , University of Technology, Sydney, 81 Broadway Street, Ultimo, NSW, Australia |
| authorships[1].author.id | https://openalex.org/A5000803152 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4252-047X |
| authorships[1].author.display_name | Wei Bian |
| authorships[1].countries | AU |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I114017466 |
| authorships[1].affiliations[0].raw_affiliation_string | , University of Technology, Sydney, 81 Broadway Street, Ultimo, NSW, Australia |
| authorships[1].institutions[0].id | https://openalex.org/I114017466 |
| authorships[1].institutions[0].ror | https://ror.org/03f0f6041 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I114017466 |
| authorships[1].institutions[0].country_code | AU |
| authorships[1].institutions[0].display_name | University of Technology Sydney |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | None Wei Bian |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | , University of Technology, Sydney, 81 Broadway Street, Ultimo, NSW, Australia |
| authorships[2].author.id | https://openalex.org/A5073709711 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2080-4762 |
| authorships[2].author.display_name | Richard Yi Da Xu |
| authorships[2].countries | AU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I114017466 |
| authorships[2].affiliations[0].raw_affiliation_string | , University of Technology, Sydney, 81 Broadway Street, Ultimo, NSW, Australia |
| authorships[2].institutions[0].id | https://openalex.org/I114017466 |
| authorships[2].institutions[0].ror | https://ror.org/03f0f6041 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I114017466 |
| authorships[2].institutions[0].country_code | AU |
| authorships[2].institutions[0].display_name | University of Technology Sydney |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Richard Yi Da Xu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | , University of Technology, Sydney, 81 Broadway Street, Ultimo, NSW, Australia |
| authorships[3].author.id | https://openalex.org/A5074103823 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7225-5449 |
| authorships[3].author.display_name | Dacheng Tao |
| authorships[3].countries | AU |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I114017466 |
| authorships[3].affiliations[0].raw_affiliation_string | , University of Technology, Sydney, 81 Broadway Street, Ultimo, NSW, Australia |
| authorships[3].institutions[0].id | https://openalex.org/I114017466 |
| authorships[3].institutions[0].ror | https://ror.org/03f0f6041 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I114017466 |
| authorships[3].institutions[0].country_code | AU |
| authorships[3].institutions[0].display_name | University of Technology Sydney |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | None Dacheng Tao |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | , University of Technology, Sydney, 81 Broadway Street, Ultimo, NSW, Australia |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1904.03170 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Diversified Hidden Markov Models for Sequential Labeling |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11106 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9973999857902527 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Data Management and Algorithms |
| related_works | https://openalex.org/W1510894296, https://openalex.org/W2134386692, https://openalex.org/W2379651310, https://openalex.org/W2113019827, https://openalex.org/W1541249122, https://openalex.org/W2084326697, https://openalex.org/W2194396582, https://openalex.org/W2027903142, https://openalex.org/W2082284720, https://openalex.org/W2116722627 |
| cited_by_count | 25 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 1 |
| counts_by_year[4].year | 2020 |
| counts_by_year[4].cited_by_count | 3 |
| counts_by_year[5].year | 2019 |
| counts_by_year[5].cited_by_count | 6 |
| counts_by_year[6].year | 2018 |
| counts_by_year[6].cited_by_count | 2 |
| counts_by_year[7].year | 2017 |
| counts_by_year[7].cited_by_count | 3 |
| counts_by_year[8].year | 2016 |
| counts_by_year[8].cited_by_count | 1 |
| counts_by_year[9].year | 2012 |
| counts_by_year[9].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1904.03170 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1904.03170 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1904.03170 |
| primary_location.id | doi:10.1109/tkde.2015.2433262 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S30698027 |
| primary_location.source.issn | 1041-4347, 1558-2191, 2326-3865 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1041-4347 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEEE Transactions on Knowledge and Data Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310320439 |
| primary_location.source.host_organization_name | IEEE Computer Society |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320439, https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | IEEE Computer Society, Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Transactions on Knowledge and Data Engineering |
| primary_location.landing_page_url | https://doi.org/10.1109/tkde.2015.2433262 |
| publication_date | 2015-05-14 |
| publication_year | 2015 |
| referenced_works | https://openalex.org/W6682334925, https://openalex.org/W2125838338, https://openalex.org/W2330149175, https://openalex.org/W6636649193, https://openalex.org/W2013988526, https://openalex.org/W2171080222, https://openalex.org/W6635494071, https://openalex.org/W2465027326, https://openalex.org/W2099529148, https://openalex.org/W2149551320, https://openalex.org/W2015245929, https://openalex.org/W2045344178, https://openalex.org/W6683465734, https://openalex.org/W6678251536, https://openalex.org/W6683355481, https://openalex.org/W6675002571, https://openalex.org/W1958800402, https://openalex.org/W2159428510, https://openalex.org/W6682443497, https://openalex.org/W2084028080, https://openalex.org/W1998683369, https://openalex.org/W2138779671, https://openalex.org/W6636104918, https://openalex.org/W2614053927, https://openalex.org/W6680911227, https://openalex.org/W2093989924, https://openalex.org/W6638584940, https://openalex.org/W6679853412, https://openalex.org/W2047758746, https://openalex.org/W6638384976, https://openalex.org/W6638914580, https://openalex.org/W1517708896, https://openalex.org/W7024135352, https://openalex.org/W6910383664, https://openalex.org/W2148753264, https://openalex.org/W6688880502, https://openalex.org/W2152770371, https://openalex.org/W6679559908, https://openalex.org/W2158266063, https://openalex.org/W6686821501, https://openalex.org/W6675760969, https://openalex.org/W6682418119, https://openalex.org/W2158520534, https://openalex.org/W2099873701, https://openalex.org/W1592736283, https://openalex.org/W2222269984, https://openalex.org/W2962775423, https://openalex.org/W2953102581, https://openalex.org/W1601795611, https://openalex.org/W2158334272, https://openalex.org/W1632114991, https://openalex.org/W2105644991, https://openalex.org/W1663973292, https://openalex.org/W4253573210, https://openalex.org/W1570122015, https://openalex.org/W2134553104, https://openalex.org/W3003413895, https://openalex.org/W2890912593, https://openalex.org/W2964105469, https://openalex.org/W2187580259, https://openalex.org/W2153412625, https://openalex.org/W2154090186, https://openalex.org/W2131029730, https://openalex.org/W1570013475, https://openalex.org/W2151531457, https://openalex.org/W3103014337, https://openalex.org/W2177179288, https://openalex.org/W1603660271, https://openalex.org/W2963533033, https://openalex.org/W2148516480, https://openalex.org/W2123068277, https://openalex.org/W1818395637, https://openalex.org/W2141425367, https://openalex.org/W2150142469, https://openalex.org/W2123167923, https://openalex.org/W1594523940, https://openalex.org/W1820075673, https://openalex.org/W1856231595, https://openalex.org/W1560009468 |
| referenced_works_count | 79 |
| abstract_inverted_index.a | 5, 9, 22, 86, 98, 116 |
| abstract_inverted_index.as | 45 |
| abstract_inverted_index.at | 55 |
| abstract_inverted_index.by | 115 |
| abstract_inverted_index.in | 64, 72 |
| abstract_inverted_index.is | 4, 38, 75, 113 |
| abstract_inverted_index.it | 37 |
| abstract_inverted_index.of | 1, 59, 68, 78, 89, 150 |
| abstract_inverted_index.on | 138 |
| abstract_inverted_index.to | 41, 124, 154 |
| abstract_inverted_index.we | 84, 122 |
| abstract_inverted_index.HMM | 60 |
| abstract_inverted_index.OCR | 146 |
| abstract_inverted_index.One | 67 |
| abstract_inverted_index.PoS | 143 |
| abstract_inverted_index.and | 50, 104, 130 |
| abstract_inverted_index.are | 135 |
| abstract_inverted_index.for | 8, 25, 133, 141 |
| abstract_inverted_index.new | 87 |
| abstract_inverted_index.not | 32 |
| abstract_inverted_index.the | 16, 29, 65, 69, 76, 111, 148, 155 |
| abstract_inverted_index.(PoS | 48 |
| abstract_inverted_index.HMM, | 90 |
| abstract_inverted_index.been | 62 |
| abstract_inverted_index.both | 125 |
| abstract_inverted_index.dHMM | 134 |
| abstract_inverted_index.data | 3 |
| abstract_inverted_index.does | 31 |
| abstract_inverted_index.have | 61 |
| abstract_inverted_index.more | 107 |
| abstract_inverted_index.over | 101 |
| abstract_inverted_index.show | 33 |
| abstract_inverted_index.such | 44 |
| abstract_inverted_index.this | 82 |
| abstract_inverted_index.thus | 105 |
| abstract_inverted_index.when | 36 |
| abstract_inverted_index.wide | 10 |
| abstract_inverted_index.with | 152 |
| abstract_inverted_index.While | 15 |
| abstract_inverted_index.apply | 123 |
| abstract_inverted_index.dHMM, | 151 |
| abstract_inverted_index.point | 118 |
| abstract_inverted_index.prior | 80, 100 |
| abstract_inverted_index.range | 11 |
| abstract_inverted_index.these | 73 |
| abstract_inverted_index.which | 96, 121 |
| abstract_inverted_index.world | 13 |
| abstract_inverted_index.(OCR). | 53 |
| abstract_inverted_index.Aiming | 54 |
| abstract_inverted_index.Hidden | 18 |
| abstract_inverted_index.Markov | 19 |
| abstract_inverted_index.Models | 20, 94 |
| abstract_inverted_index.common | 70 |
| abstract_inverted_index.paper, | 83 |
| abstract_inverted_index.prior, | 120 |
| abstract_inverted_index.proper | 79 |
| abstract_inverted_index.termed | 91 |
| abstract_inverted_index.(dHMM), | 95 |
| abstract_inverted_index.applied | 40 |
| abstract_inverted_index.dynamic | 108 |
| abstract_inverted_index.modeled | 114 |
| abstract_inverted_index.process | 119 |
| abstract_inverted_index.propose | 85 |
| abstract_inverted_index.tagging | 47, 144 |
| abstract_inverted_index.Labeling | 0 |
| abstract_inverted_index.Learning | 129 |
| abstract_inverted_index.approach | 24 |
| abstract_inverted_index.datasets | 140 |
| abstract_inverted_index.directly | 39 |
| abstract_inverted_index.of\nreal | 12 |
| abstract_inverted_index.proposed | 63 |
| abstract_inverted_index.tagging) | 49 |
| abstract_inverted_index.utilizes | 97 |
| abstract_inverted_index.benchmark | 139 |
| abstract_inverted_index.confirmed | 147 |
| abstract_inverted_index.diversity | 112 |
| abstract_inverted_index.extension | 88 |
| abstract_inverted_index.improving | 56 |
| abstract_inverted_index.inference | 131 |
| abstract_inverted_index.labeling, | 28 |
| abstract_inverted_index.prevalent | 6 |
| abstract_inverted_index.problems, | 43 |
| abstract_inverted_index.algorithms | 132 |
| abstract_inverted_index.extensions | 74 |
| abstract_inverted_index.satisfying | 34 |
| abstract_inverted_index.scenarios. | 128 |
| abstract_inverted_index.sequential | 2, 27 |
| abstract_inverted_index.diversified | 92 |
| abstract_inverted_index.evaluations | 137 |
| abstract_inverted_index.facilitates | 106 |
| abstract_inverted_index.first-order | 17 |
| abstract_inverted_index.fundamental | 23 |
| abstract_inverted_index.performance | 35 |
| abstract_inverted_index.real\nworld | 42 |
| abstract_inverted_index.recognition | 52 |
| abstract_inverted_index.basic\nmodel | 30 |
| abstract_inverted_index.literatures. | 66 |
| abstract_inverted_index.meta-problem | 7 |
| abstract_inverted_index.performance, | 57 |
| abstract_inverted_index.unsupervised | 26, 126, 142 |
| abstract_inverted_index.Specifically, | 110 |
| abstract_inverted_index.applications. | 14 |
| abstract_inverted_index.effectiveness | 149 |
| abstract_inverted_index.incorporation | 77 |
| abstract_inverted_index.key\nfeatures | 71 |
| abstract_inverted_index.probabilities | 103 |
| abstract_inverted_index.Hidden\nMarkov | 93 |
| abstract_inverted_index.part-of-speech | 46 |
| abstract_inverted_index.(HMM)\nprovides | 21 |
| abstract_inverted_index.and\nsupervised | 127, 145 |
| abstract_inverted_index.information.\nIn | 81 |
| abstract_inverted_index.optical\ncharacter | 51 |
| abstract_inverted_index.derived.\nEmpirical | 136 |
| abstract_inverted_index.state-of-the-art.\n | 156 |
| abstract_inverted_index.diversity-encouraging | 99 |
| abstract_inverted_index.important\nextensions | 58 |
| abstract_inverted_index.the\nstate-transition | 102 |
| abstract_inverted_index.sequential\nlabellings. | 109 |
| abstract_inverted_index.competitive\nperformance | 153 |
| abstract_inverted_index.continuous\ndeterminantal | 117 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.8513044 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |