DMFNet: Deep Multi-Modal Fusion Network for RGB-D Indoor Scene Segmentation Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1109/access.2019.2955101
Indoor scene segmentation is a difficult task in computer vision. We propose an indoor scene segmentation framework, called DFMNet, incorporating RGB and complementary depth information to establish indoor scene segmentation. We use the squeeze-and-excitation residual network as encoder to simultaneously extract features from RGB and depth data and fuse them in the decoder. Multiple average pooling layers and transposed convolution layers are used to process the encoded outputs and fuse their outputs over several decoder layers. To optimize the network parameters, we use a pyramid supervision training scheme, which applies supervised learning over different layers in the decoder to prevent vanishing gradients. We evaluated the proposed DFMNet on the NYU Depth V2 dataset, which consists of 1449 cluttered indoor scenes, achieving competitive results compared to state-of-the-art methods.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2019.2955101
- https://ieeexplore.ieee.org/ielx7/6287639/8600701/08910596.pdf
- OA Status
- gold
- Cited By
- 38
- References
- 68
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2993853826
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2993853826Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2019.2955101Digital Object Identifier
- Title
-
DMFNet: Deep Multi-Modal Fusion Network for RGB-D Indoor Scene SegmentationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-01-01Full publication date if available
- Authors
-
Jianzhong Yuan, Wujie Zhou, Ting LuoList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2019.2955101Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/6287639/8600701/08910596.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/6287639/8600701/08910596.pdfDirect OA link when available
- Concepts
-
Computer science, Artificial intelligence, Computer vision, Modal, RGB color model, Segmentation, Sensor fusion, Fusion, Polymer chemistry, Linguistics, Chemistry, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
38Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 11, 2023: 11, 2022: 6, 2021: 3Per-year citation counts (last 5 years)
- References (count)
-
68Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2993853826 |
|---|---|
| doi | https://doi.org/10.1109/access.2019.2955101 |
| ids.doi | https://doi.org/10.1109/access.2019.2955101 |
| ids.mag | 2993853826 |
| ids.openalex | https://openalex.org/W2993853826 |
| fwci | 1.28262909 |
| type | article |
| title | DMFNet: Deep Multi-Modal Fusion Network for RGB-D Indoor Scene Segmentation |
| biblio.issue | |
| biblio.volume | 7 |
| biblio.last_page | 169358 |
| biblio.first_page | 169350 |
| grants[0].funder | https://openalex.org/F4320321001 |
| grants[0].award_id | 61502429 |
| grants[0].funder_display_name | National Natural Science Foundation of China |
| grants[1].funder | https://openalex.org/F4320321001 |
| grants[1].award_id | 61672337 |
| grants[1].funder_display_name | National Natural Science Foundation of China |
| grants[2].funder | https://openalex.org/F4320321001 |
| grants[2].award_id | 61971247 |
| grants[2].funder_display_name | National Natural Science Foundation of China |
| grants[3].funder | https://openalex.org/F4320338464 |
| grants[3].award_id | LY18F020012 |
| grants[3].funder_display_name | Natural Science Foundation of Zhejiang Province |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T10331 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9990000128746033 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Video Surveillance and Tracking Methods |
| topics[2].id | https://openalex.org/T11164 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9980000257492065 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2305 |
| topics[2].subfield.display_name | Environmental Engineering |
| topics[2].display_name | Remote Sensing and LiDAR Applications |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320338464 |
| funders[1].ror | https://ror.org/01h0zpd94 |
| funders[1].display_name | Natural Science Foundation of Zhejiang Province |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7751157879829407 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7079558968544006 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C31972630 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6553889513015747 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[2].display_name | Computer vision |
| concepts[3].id | https://openalex.org/C71139939 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6362557411193848 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q910194 |
| concepts[3].display_name | Modal |
| concepts[4].id | https://openalex.org/C82990744 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6244921684265137 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q166194 |
| concepts[4].display_name | RGB color model |
| concepts[5].id | https://openalex.org/C89600930 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5270980596542358 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[5].display_name | Segmentation |
| concepts[6].id | https://openalex.org/C33954974 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5008349418640137 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q486494 |
| concepts[6].display_name | Sensor fusion |
| concepts[7].id | https://openalex.org/C158525013 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4602254033088684 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2593739 |
| concepts[7].display_name | Fusion |
| concepts[8].id | https://openalex.org/C188027245 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q750446 |
| concepts[8].display_name | Polymer chemistry |
| concepts[9].id | https://openalex.org/C41895202 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[9].display_name | Linguistics |
| concepts[10].id | https://openalex.org/C185592680 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[10].display_name | Chemistry |
| concepts[11].id | https://openalex.org/C138885662 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[11].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7751157879829407 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.7079558968544006 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-vision |
| keywords[2].score | 0.6553889513015747 |
| keywords[2].display_name | Computer vision |
| keywords[3].id | https://openalex.org/keywords/modal |
| keywords[3].score | 0.6362557411193848 |
| keywords[3].display_name | Modal |
| keywords[4].id | https://openalex.org/keywords/rgb-color-model |
| keywords[4].score | 0.6244921684265137 |
| keywords[4].display_name | RGB color model |
| keywords[5].id | https://openalex.org/keywords/segmentation |
| keywords[5].score | 0.5270980596542358 |
| keywords[5].display_name | Segmentation |
| keywords[6].id | https://openalex.org/keywords/sensor-fusion |
| keywords[6].score | 0.5008349418640137 |
| keywords[6].display_name | Sensor fusion |
| keywords[7].id | https://openalex.org/keywords/fusion |
| keywords[7].score | 0.4602254033088684 |
| keywords[7].display_name | Fusion |
| language | en |
| locations[0].id | doi:10.1109/access.2019.2955101 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8600701/08910596.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2019.2955101 |
| locations[1].id | pmh:oai:doaj.org/article:4c045ebfb21747088dd78f5e8ea3eb96 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].source.host_organization_lineage | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 7, Pp 169350-169358 (2019) |
| locations[1].landing_page_url | https://doaj.org/article/4c045ebfb21747088dd78f5e8ea3eb96 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5023584690 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Jianzhong Yuan |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I168879160 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, China |
| authorships[0].institutions[0].id | https://openalex.org/I168879160 |
| authorships[0].institutions[0].ror | https://ror.org/05mx0wr29 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I168879160 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Zhejiang University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jianzhong Yuan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, China |
| authorships[1].author.id | https://openalex.org/A5076872319 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3055-2493 |
| authorships[1].author.display_name | Wujie Zhou |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I168879160 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I76130692 |
| authorships[1].affiliations[1].raw_affiliation_string | Institute of Information and Communication Engineering, Zhejiang University, Hangzhou, China |
| authorships[1].institutions[0].id | https://openalex.org/I76130692 |
| authorships[1].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Zhejiang University |
| authorships[1].institutions[1].id | https://openalex.org/I168879160 |
| authorships[1].institutions[1].ror | https://ror.org/05mx0wr29 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I168879160 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Zhejiang University of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wujie Zhou |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Institute of Information and Communication Engineering, Zhejiang University, Hangzhou, China, School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, China |
| authorships[2].author.id | https://openalex.org/A5060792504 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1762-148X |
| authorships[2].author.display_name | Ting Luo |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I109935558 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Science and Technology, Ningbo University, Ningbo, China |
| authorships[2].institutions[0].id | https://openalex.org/I109935558 |
| authorships[2].institutions[0].ror | https://ror.org/03et85d35 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I109935558 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Ningbo University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Ting Luo |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Science and Technology, Ningbo University, Ningbo, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/6287639/8600701/08910596.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | DMFNet: Deep Multi-Modal Fusion Network for RGB-D Indoor Scene Segmentation |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W2486460843, https://openalex.org/W2168109476, https://openalex.org/W1968121071, https://openalex.org/W2379392295, https://openalex.org/W3160965418, https://openalex.org/W2061647633, https://openalex.org/W2132659060, https://openalex.org/W2031992971, https://openalex.org/W3214791684, https://openalex.org/W2152662039 |
| cited_by_count | 38 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 11 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 11 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 6 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 3 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2019.2955101 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8600701/08910596.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2019.2955101 |
| primary_location.id | doi:10.1109/access.2019.2955101 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8600701/08910596.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2019.2955101 |
| publication_date | 2019-01-01 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2798376494, https://openalex.org/W2799166040, https://openalex.org/W2302255633, https://openalex.org/W6729059855, https://openalex.org/W6675415620, https://openalex.org/W6747680804, https://openalex.org/W2097117768, https://openalex.org/W2921903858, https://openalex.org/W2531409750, https://openalex.org/W2964137095, https://openalex.org/W2333621733, https://openalex.org/W2963753570, https://openalex.org/W2963563573, https://openalex.org/W1610707153, https://openalex.org/W2904904022, https://openalex.org/W6752606552, https://openalex.org/W6637373629, https://openalex.org/W6684191040, https://openalex.org/W2161236525, https://openalex.org/W6639204139, https://openalex.org/W2963108253, https://openalex.org/W2124592697, https://openalex.org/W2917267381, https://openalex.org/W125693051, https://openalex.org/W2339172515, https://openalex.org/W6756040250, https://openalex.org/W2067912884, https://openalex.org/W6754879843, https://openalex.org/W2563705555, https://openalex.org/W2884709090, https://openalex.org/W2799213142, https://openalex.org/W2194775991, https://openalex.org/W1565402342, https://openalex.org/W2587989515, https://openalex.org/W1745334888, https://openalex.org/W2963881378, https://openalex.org/W2962850830, https://openalex.org/W2752782242, https://openalex.org/W1903029394, https://openalex.org/W2590402370, https://openalex.org/W2412782625, https://openalex.org/W6640295612, https://openalex.org/W6696085341, https://openalex.org/W2964309882, https://openalex.org/W2884585870, https://openalex.org/W2560023338, https://openalex.org/W2803442140, https://openalex.org/W2295755720, https://openalex.org/W6753038380, https://openalex.org/W2963495494, https://openalex.org/W2800016683, https://openalex.org/W2609822318, https://openalex.org/W2604455318, https://openalex.org/W6734547415, https://openalex.org/W2541674938, https://openalex.org/W1923697677, https://openalex.org/W2952793010, https://openalex.org/W2963840672, https://openalex.org/W1686810756, https://openalex.org/W4297810817, https://openalex.org/W1849277567, https://openalex.org/W2163605009, https://openalex.org/W2890782586, https://openalex.org/W4300126339, https://openalex.org/W2805395174, https://openalex.org/W2899771611, https://openalex.org/W2595272013, https://openalex.org/W2782757030 |
| referenced_works_count | 68 |
| abstract_inverted_index.a | 4, 83 |
| abstract_inverted_index.To | 76 |
| abstract_inverted_index.V2 | 111 |
| abstract_inverted_index.We | 10, 30, 102 |
| abstract_inverted_index.an | 12 |
| abstract_inverted_index.as | 36 |
| abstract_inverted_index.in | 7, 50, 95 |
| abstract_inverted_index.is | 3 |
| abstract_inverted_index.of | 115 |
| abstract_inverted_index.on | 107 |
| abstract_inverted_index.to | 25, 38, 63, 98, 124 |
| abstract_inverted_index.we | 81 |
| abstract_inverted_index.NYU | 109 |
| abstract_inverted_index.RGB | 20, 43 |
| abstract_inverted_index.and | 21, 44, 47, 57, 68 |
| abstract_inverted_index.are | 61 |
| abstract_inverted_index.the | 32, 51, 65, 78, 96, 104, 108 |
| abstract_inverted_index.use | 31, 82 |
| abstract_inverted_index.1449 | 116 |
| abstract_inverted_index.data | 46 |
| abstract_inverted_index.from | 42 |
| abstract_inverted_index.fuse | 48, 69 |
| abstract_inverted_index.over | 72, 92 |
| abstract_inverted_index.task | 6 |
| abstract_inverted_index.them | 49 |
| abstract_inverted_index.used | 62 |
| abstract_inverted_index.Depth | 110 |
| abstract_inverted_index.depth | 23, 45 |
| abstract_inverted_index.scene | 1, 14, 28 |
| abstract_inverted_index.their | 70 |
| abstract_inverted_index.which | 88, 113 |
| abstract_inverted_index.DFMNet | 106 |
| abstract_inverted_index.Indoor | 0 |
| abstract_inverted_index.called | 17 |
| abstract_inverted_index.indoor | 13, 27, 118 |
| abstract_inverted_index.layers | 56, 60, 94 |
| abstract_inverted_index.DFMNet, | 18 |
| abstract_inverted_index.applies | 89 |
| abstract_inverted_index.average | 54 |
| abstract_inverted_index.decoder | 74, 97 |
| abstract_inverted_index.encoded | 66 |
| abstract_inverted_index.encoder | 37 |
| abstract_inverted_index.extract | 40 |
| abstract_inverted_index.layers. | 75 |
| abstract_inverted_index.network | 35, 79 |
| abstract_inverted_index.outputs | 67, 71 |
| abstract_inverted_index.pooling | 55 |
| abstract_inverted_index.prevent | 99 |
| abstract_inverted_index.process | 64 |
| abstract_inverted_index.propose | 11 |
| abstract_inverted_index.pyramid | 84 |
| abstract_inverted_index.results | 122 |
| abstract_inverted_index.scenes, | 119 |
| abstract_inverted_index.scheme, | 87 |
| abstract_inverted_index.several | 73 |
| abstract_inverted_index.vision. | 9 |
| abstract_inverted_index.Multiple | 53 |
| abstract_inverted_index.compared | 123 |
| abstract_inverted_index.computer | 8 |
| abstract_inverted_index.consists | 114 |
| abstract_inverted_index.dataset, | 112 |
| abstract_inverted_index.decoder. | 52 |
| abstract_inverted_index.features | 41 |
| abstract_inverted_index.learning | 91 |
| abstract_inverted_index.methods. | 126 |
| abstract_inverted_index.optimize | 77 |
| abstract_inverted_index.proposed | 105 |
| abstract_inverted_index.residual | 34 |
| abstract_inverted_index.training | 86 |
| abstract_inverted_index.achieving | 120 |
| abstract_inverted_index.cluttered | 117 |
| abstract_inverted_index.different | 93 |
| abstract_inverted_index.difficult | 5 |
| abstract_inverted_index.establish | 26 |
| abstract_inverted_index.evaluated | 103 |
| abstract_inverted_index.vanishing | 100 |
| abstract_inverted_index.framework, | 16 |
| abstract_inverted_index.gradients. | 101 |
| abstract_inverted_index.supervised | 90 |
| abstract_inverted_index.transposed | 58 |
| abstract_inverted_index.competitive | 121 |
| abstract_inverted_index.convolution | 59 |
| abstract_inverted_index.information | 24 |
| abstract_inverted_index.parameters, | 80 |
| abstract_inverted_index.supervision | 85 |
| abstract_inverted_index.segmentation | 2, 15 |
| abstract_inverted_index.complementary | 22 |
| abstract_inverted_index.incorporating | 19 |
| abstract_inverted_index.segmentation. | 29 |
| abstract_inverted_index.simultaneously | 39 |
| abstract_inverted_index.state-of-the-art | 125 |
| abstract_inverted_index.squeeze-and-excitation | 33 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.7400000095367432 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.84124116 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |