Do LLMs Understand User Preferences? Evaluating LLMs On User Rating Prediction Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2305.06474
Large Language Models (LLMs) have demonstrated exceptional capabilities in generalizing to new tasks in a zero-shot or few-shot manner. However, the extent to which LLMs can comprehend user preferences based on their previous behavior remains an emerging and still unclear research question. Traditionally, Collaborative Filtering (CF) has been the most effective method for these tasks, predominantly relying on the extensive volume of rating data. In contrast, LLMs typically demand considerably less data while maintaining an exhaustive world knowledge about each item, such as movies or products. In this paper, we conduct a thorough examination of both CF and LLMs within the classic task of user rating prediction, which involves predicting a user's rating for a candidate item based on their past ratings. We investigate various LLMs in different sizes, ranging from 250M to 540B parameters and evaluate their performance in zero-shot, few-shot, and fine-tuning scenarios. We conduct comprehensive analysis to compare between LLMs and strong CF methods, and find that zero-shot LLMs lag behind traditional recommender models that have the access to user interaction data, indicating the importance of user interaction data. However, through fine-tuning, LLMs achieve comparable or even better performance with only a small fraction of the training data, demonstrating their potential through data efficiency.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2305.06474
- https://arxiv.org/pdf/2305.06474
- OA Status
- green
- Cited By
- 24
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4376311940
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4376311940Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2305.06474Digital Object Identifier
- Title
-
Do LLMs Understand User Preferences? Evaluating LLMs On User Rating PredictionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-05-10Full publication date if available
- Authors
-
Wang-Cheng Kang, Jianmo Ni, Nikhil Mehta, Maheswaran Sathiamoorthy, Lichan Hong, Ed H., Derek Zhiyuan ChengList of authors in order
- Landing page
-
https://arxiv.org/abs/2305.06474Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2305.06474Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2305.06474Direct OA link when available
- Concepts
-
Task (project management), Shot (pellet), Computer science, Economics, Management, Organic chemistry, ChemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
24Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 10, 2023: 9Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4376311940 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2305.06474 |
| ids.doi | https://doi.org/10.48550/arxiv.2305.06474 |
| ids.openalex | https://openalex.org/W4376311940 |
| fwci | |
| type | preprint |
| title | Do LLMs Understand User Preferences? Evaluating LLMs On User Rating Prediction |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9950000047683716 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T10203 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9944000244140625 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1710 |
| topics[1].subfield.display_name | Information Systems |
| topics[1].display_name | Recommender Systems and Techniques |
| topics[2].id | https://openalex.org/T13274 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.934499979019165 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1710 |
| topics[2].subfield.display_name | Information Systems |
| topics[2].display_name | Expert finding and Q&A systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780451532 |
| concepts[0].level | 2 |
| concepts[0].score | 0.510148823261261 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[0].display_name | Task (project management) |
| concepts[1].id | https://openalex.org/C2778344882 |
| concepts[1].level | 2 |
| concepts[1].score | 0.489866703748703 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q278938 |
| concepts[1].display_name | Shot (pellet) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.47321218252182007 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C162324750 |
| concepts[3].level | 0 |
| concepts[3].score | 0.1278371810913086 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[3].display_name | Economics |
| concepts[4].id | https://openalex.org/C187736073 |
| concepts[4].level | 1 |
| concepts[4].score | 0.09299728274345398 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[4].display_name | Management |
| concepts[5].id | https://openalex.org/C178790620 |
| concepts[5].level | 1 |
| concepts[5].score | 0.0 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[5].display_name | Organic chemistry |
| concepts[6].id | https://openalex.org/C185592680 |
| concepts[6].level | 0 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[6].display_name | Chemistry |
| keywords[0].id | https://openalex.org/keywords/task |
| keywords[0].score | 0.510148823261261 |
| keywords[0].display_name | Task (project management) |
| keywords[1].id | https://openalex.org/keywords/shot |
| keywords[1].score | 0.489866703748703 |
| keywords[1].display_name | Shot (pellet) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.47321218252182007 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/economics |
| keywords[3].score | 0.1278371810913086 |
| keywords[3].display_name | Economics |
| keywords[4].id | https://openalex.org/keywords/management |
| keywords[4].score | 0.09299728274345398 |
| keywords[4].display_name | Management |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2305.06474 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2305.06474 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2305.06474 |
| locations[1].id | doi:10.48550/arxiv.2305.06474 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2305.06474 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5090597599 |
| authorships[0].author.orcid | https://orcid.org/0009-0006-8795-3665 |
| authorships[0].author.display_name | Wang-Cheng Kang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kang, Wang-Cheng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5077817759 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6863-8073 |
| authorships[1].author.display_name | Jianmo Ni |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ni, Jianmo |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5078550327 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7501-9975 |
| authorships[2].author.display_name | Nikhil Mehta |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mehta, Nikhil |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5059524630 |
| authorships[3].author.orcid | https://orcid.org/0009-0005-2192-3423 |
| authorships[3].author.display_name | Maheswaran Sathiamoorthy |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Sathiamoorthy, Maheswaran |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5079085366 |
| authorships[4].author.orcid | https://orcid.org/0009-0004-9563-554X |
| authorships[4].author.display_name | Lichan Hong |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Hong, Lichan |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5028125399 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-3230-5338 |
| authorships[5].author.display_name | Ed H. |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Chi, Ed |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5055484401 |
| authorships[6].author.orcid | https://orcid.org/0009-0000-7943-8328 |
| authorships[6].author.display_name | Derek Zhiyuan Cheng |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Cheng, Derek Zhiyuan |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2305.06474 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-05-13T00:00:00 |
| display_name | Do LLMs Understand User Preferences? Evaluating LLMs On User Rating Prediction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9950000047683716 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2074502265, https://openalex.org/W4214877189, https://openalex.org/W2773965352, https://openalex.org/W2381179799, https://openalex.org/W2980279061, https://openalex.org/W2334685461, https://openalex.org/W2366718574, https://openalex.org/W2359774528 |
| cited_by_count | 24 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 10 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 9 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2305.06474 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2305.06474 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2305.06474 |
| primary_location.id | pmh:oai:arXiv.org:2305.06474 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2305.06474 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2305.06474 |
| publication_date | 2023-05-10 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 14, 91, 110, 114, 194 |
| abstract_inverted_index.CF | 96, 155 |
| abstract_inverted_index.In | 64, 86 |
| abstract_inverted_index.We | 122, 145 |
| abstract_inverted_index.an | 35, 74 |
| abstract_inverted_index.as | 82 |
| abstract_inverted_index.in | 8, 13, 126, 139 |
| abstract_inverted_index.of | 61, 94, 103, 178, 197 |
| abstract_inverted_index.on | 30, 57, 118 |
| abstract_inverted_index.or | 16, 84, 188 |
| abstract_inverted_index.to | 10, 22, 132, 149, 171 |
| abstract_inverted_index.we | 89 |
| abstract_inverted_index.and | 37, 97, 135, 142, 153, 157 |
| abstract_inverted_index.can | 25 |
| abstract_inverted_index.for | 52, 113 |
| abstract_inverted_index.has | 46 |
| abstract_inverted_index.lag | 162 |
| abstract_inverted_index.new | 11 |
| abstract_inverted_index.the | 20, 48, 58, 100, 169, 176, 198 |
| abstract_inverted_index.(CF) | 45 |
| abstract_inverted_index.250M | 131 |
| abstract_inverted_index.540B | 133 |
| abstract_inverted_index.LLMs | 24, 66, 98, 125, 152, 161, 185 |
| abstract_inverted_index.been | 47 |
| abstract_inverted_index.both | 95 |
| abstract_inverted_index.data | 71, 205 |
| abstract_inverted_index.each | 79 |
| abstract_inverted_index.even | 189 |
| abstract_inverted_index.find | 158 |
| abstract_inverted_index.from | 130 |
| abstract_inverted_index.have | 4, 168 |
| abstract_inverted_index.item | 116 |
| abstract_inverted_index.less | 70 |
| abstract_inverted_index.most | 49 |
| abstract_inverted_index.only | 193 |
| abstract_inverted_index.past | 120 |
| abstract_inverted_index.such | 81 |
| abstract_inverted_index.task | 102 |
| abstract_inverted_index.that | 159, 167 |
| abstract_inverted_index.this | 87 |
| abstract_inverted_index.user | 27, 104, 172, 179 |
| abstract_inverted_index.with | 192 |
| abstract_inverted_index.Large | 0 |
| abstract_inverted_index.about | 78 |
| abstract_inverted_index.based | 29, 117 |
| abstract_inverted_index.data, | 174, 200 |
| abstract_inverted_index.data. | 63, 181 |
| abstract_inverted_index.item, | 80 |
| abstract_inverted_index.small | 195 |
| abstract_inverted_index.still | 38 |
| abstract_inverted_index.tasks | 12 |
| abstract_inverted_index.their | 31, 119, 137, 202 |
| abstract_inverted_index.these | 53 |
| abstract_inverted_index.which | 23, 107 |
| abstract_inverted_index.while | 72 |
| abstract_inverted_index.world | 76 |
| abstract_inverted_index.(LLMs) | 3 |
| abstract_inverted_index.Models | 2 |
| abstract_inverted_index.access | 170 |
| abstract_inverted_index.behind | 163 |
| abstract_inverted_index.better | 190 |
| abstract_inverted_index.demand | 68 |
| abstract_inverted_index.extent | 21 |
| abstract_inverted_index.method | 51 |
| abstract_inverted_index.models | 166 |
| abstract_inverted_index.movies | 83 |
| abstract_inverted_index.paper, | 88 |
| abstract_inverted_index.rating | 62, 105, 112 |
| abstract_inverted_index.sizes, | 128 |
| abstract_inverted_index.strong | 154 |
| abstract_inverted_index.tasks, | 54 |
| abstract_inverted_index.user's | 111 |
| abstract_inverted_index.volume | 60 |
| abstract_inverted_index.within | 99 |
| abstract_inverted_index.achieve | 186 |
| abstract_inverted_index.between | 151 |
| abstract_inverted_index.classic | 101 |
| abstract_inverted_index.compare | 150 |
| abstract_inverted_index.conduct | 90, 146 |
| abstract_inverted_index.manner. | 18 |
| abstract_inverted_index.ranging | 129 |
| abstract_inverted_index.relying | 56 |
| abstract_inverted_index.remains | 34 |
| abstract_inverted_index.through | 183, 204 |
| abstract_inverted_index.unclear | 39 |
| abstract_inverted_index.various | 124 |
| abstract_inverted_index.However, | 19, 182 |
| abstract_inverted_index.Language | 1 |
| abstract_inverted_index.analysis | 148 |
| abstract_inverted_index.behavior | 33 |
| abstract_inverted_index.emerging | 36 |
| abstract_inverted_index.evaluate | 136 |
| abstract_inverted_index.few-shot | 17 |
| abstract_inverted_index.fraction | 196 |
| abstract_inverted_index.involves | 108 |
| abstract_inverted_index.methods, | 156 |
| abstract_inverted_index.previous | 32 |
| abstract_inverted_index.ratings. | 121 |
| abstract_inverted_index.research | 40 |
| abstract_inverted_index.thorough | 92 |
| abstract_inverted_index.training | 199 |
| abstract_inverted_index.Filtering | 44 |
| abstract_inverted_index.candidate | 115 |
| abstract_inverted_index.contrast, | 65 |
| abstract_inverted_index.different | 127 |
| abstract_inverted_index.effective | 50 |
| abstract_inverted_index.extensive | 59 |
| abstract_inverted_index.few-shot, | 141 |
| abstract_inverted_index.knowledge | 77 |
| abstract_inverted_index.potential | 203 |
| abstract_inverted_index.products. | 85 |
| abstract_inverted_index.question. | 41 |
| abstract_inverted_index.typically | 67 |
| abstract_inverted_index.zero-shot | 15, 160 |
| abstract_inverted_index.comparable | 187 |
| abstract_inverted_index.comprehend | 26 |
| abstract_inverted_index.exhaustive | 75 |
| abstract_inverted_index.importance | 177 |
| abstract_inverted_index.indicating | 175 |
| abstract_inverted_index.parameters | 134 |
| abstract_inverted_index.predicting | 109 |
| abstract_inverted_index.scenarios. | 144 |
| abstract_inverted_index.zero-shot, | 140 |
| abstract_inverted_index.efficiency. | 206 |
| abstract_inverted_index.examination | 93 |
| abstract_inverted_index.exceptional | 6 |
| abstract_inverted_index.fine-tuning | 143 |
| abstract_inverted_index.interaction | 173, 180 |
| abstract_inverted_index.investigate | 123 |
| abstract_inverted_index.maintaining | 73 |
| abstract_inverted_index.performance | 138, 191 |
| abstract_inverted_index.prediction, | 106 |
| abstract_inverted_index.preferences | 28 |
| abstract_inverted_index.recommender | 165 |
| abstract_inverted_index.traditional | 164 |
| abstract_inverted_index.capabilities | 7 |
| abstract_inverted_index.considerably | 69 |
| abstract_inverted_index.demonstrated | 5 |
| abstract_inverted_index.fine-tuning, | 184 |
| abstract_inverted_index.generalizing | 9 |
| abstract_inverted_index.Collaborative | 43 |
| abstract_inverted_index.comprehensive | 147 |
| abstract_inverted_index.demonstrating | 201 |
| abstract_inverted_index.predominantly | 55 |
| abstract_inverted_index.Traditionally, | 42 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |