Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2104.13613
Domain adaptation for semantic segmentation aims to improve the model performance in the presence of a distribution shift between source and target domain. Leveraging the supervision from auxiliary tasks~(such as depth estimation) has the potential to heal this shift because many visual tasks are closely related to each other. However, such a supervision is not always available. In this work, we leverage the guidance from self-supervised depth estimation, which is available on both domains, to bridge the domain gap. On the one hand, we propose to explicitly learn the task feature correlation to strengthen the target semantic predictions with the help of target depth estimation. On the other hand, we use the depth prediction discrepancy from source and target depth decoders to approximate the pixel-wise adaptation difficulty. The adaptation difficulty, inferred from depth, is then used to refine the target semantic segmentation pseudo-labels. The proposed method can be easily implemented into existing segmentation frameworks. We demonstrate the effectiveness of our approach on the benchmark tasks SYNTHIA-to-Cityscapes and GTA-to-Cityscapes, on which we achieve the new state-of-the-art performance of $55.0\%$ and $56.6\%$, respectively. Our code is available at \url{https://qin.ee/corda}.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2104.13613
- https://arxiv.org/pdf/2104.13613
- OA Status
- green
- Cited By
- 6
- References
- 58
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3158314417
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3158314417Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2104.13613Digital Object Identifier
- Title
-
Domain Adaptive Semantic Segmentation with Self-Supervised Depth EstimationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-04-28Full publication date if available
- Authors
-
Qin Wang, Dengxin Dai, Lukas Hoyer, Olga Fink, Luc Van GoolList of authors in order
- Landing page
-
https://arxiv.org/abs/2104.13613Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2104.13613Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2104.13613Direct OA link when available
- Concepts
-
Segmentation, Computer science, Leverage (statistics), Artificial intelligence, Benchmark (surveying), Domain adaptation, Code (set theory), Adaptation (eye), Domain (mathematical analysis), Feature (linguistics), Task (project management), Bridge (graph theory), Pattern recognition (psychology), Machine learning, Mathematics, Medicine, Physics, Economics, Set (abstract data type), Management, Programming language, Linguistics, Geodesy, Optics, Philosophy, Mathematical analysis, Classifier (UML), Internal medicine, GeographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 6Per-year citation counts (last 5 years)
- References (count)
-
58Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3158314417 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2104.13613 |
| ids.doi | https://doi.org/10.48550/arxiv.2104.13613 |
| ids.mag | 3158314417 |
| ids.openalex | https://openalex.org/W3158314417 |
| fwci | |
| type | preprint |
| title | Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11307 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Domain Adaptation and Few-Shot Learning |
| topics[1].id | https://openalex.org/T10531 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9976000189781189 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Vision and Imaging |
| topics[2].id | https://openalex.org/T11714 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9936000108718872 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Multimodal Machine Learning Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C89600930 |
| concepts[0].level | 2 |
| concepts[0].score | 0.843077540397644 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[0].display_name | Segmentation |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.8055588603019714 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C153083717 |
| concepts[2].level | 2 |
| concepts[2].score | 0.794755756855011 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q6535263 |
| concepts[2].display_name | Leverage (statistics) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6380375027656555 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C185798385 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6280826330184937 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[4].display_name | Benchmark (surveying) |
| concepts[5].id | https://openalex.org/C2776434776 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5884928703308105 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q19246213 |
| concepts[5].display_name | Domain adaptation |
| concepts[6].id | https://openalex.org/C2776760102 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5238128900527954 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5139990 |
| concepts[6].display_name | Code (set theory) |
| concepts[7].id | https://openalex.org/C139807058 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5016641616821289 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q352374 |
| concepts[7].display_name | Adaptation (eye) |
| concepts[8].id | https://openalex.org/C36503486 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5001308917999268 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[8].display_name | Domain (mathematical analysis) |
| concepts[9].id | https://openalex.org/C2776401178 |
| concepts[9].level | 2 |
| concepts[9].score | 0.47731122374534607 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[9].display_name | Feature (linguistics) |
| concepts[10].id | https://openalex.org/C2780451532 |
| concepts[10].level | 2 |
| concepts[10].score | 0.46764418482780457 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[10].display_name | Task (project management) |
| concepts[11].id | https://openalex.org/C100776233 |
| concepts[11].level | 2 |
| concepts[11].score | 0.44822579622268677 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2532492 |
| concepts[11].display_name | Bridge (graph theory) |
| concepts[12].id | https://openalex.org/C153180895 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4397273659706116 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[12].display_name | Pattern recognition (psychology) |
| concepts[13].id | https://openalex.org/C119857082 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3812065124511719 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[13].display_name | Machine learning |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.09541881084442139 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C71924100 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[15].display_name | Medicine |
| concepts[16].id | https://openalex.org/C121332964 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[16].display_name | Physics |
| concepts[17].id | https://openalex.org/C162324750 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[17].display_name | Economics |
| concepts[18].id | https://openalex.org/C177264268 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[18].display_name | Set (abstract data type) |
| concepts[19].id | https://openalex.org/C187736073 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[19].display_name | Management |
| concepts[20].id | https://openalex.org/C199360897 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[20].display_name | Programming language |
| concepts[21].id | https://openalex.org/C41895202 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[21].display_name | Linguistics |
| concepts[22].id | https://openalex.org/C13280743 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[22].display_name | Geodesy |
| concepts[23].id | https://openalex.org/C120665830 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[23].display_name | Optics |
| concepts[24].id | https://openalex.org/C138885662 |
| concepts[24].level | 0 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[24].display_name | Philosophy |
| concepts[25].id | https://openalex.org/C134306372 |
| concepts[25].level | 1 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[25].display_name | Mathematical analysis |
| concepts[26].id | https://openalex.org/C95623464 |
| concepts[26].level | 2 |
| concepts[26].score | 0.0 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[26].display_name | Classifier (UML) |
| concepts[27].id | https://openalex.org/C126322002 |
| concepts[27].level | 1 |
| concepts[27].score | 0.0 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[27].display_name | Internal medicine |
| concepts[28].id | https://openalex.org/C205649164 |
| concepts[28].level | 0 |
| concepts[28].score | 0.0 |
| concepts[28].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[28].display_name | Geography |
| keywords[0].id | https://openalex.org/keywords/segmentation |
| keywords[0].score | 0.843077540397644 |
| keywords[0].display_name | Segmentation |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.8055588603019714 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/leverage |
| keywords[2].score | 0.794755756855011 |
| keywords[2].display_name | Leverage (statistics) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6380375027656555 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/benchmark |
| keywords[4].score | 0.6280826330184937 |
| keywords[4].display_name | Benchmark (surveying) |
| keywords[5].id | https://openalex.org/keywords/domain-adaptation |
| keywords[5].score | 0.5884928703308105 |
| keywords[5].display_name | Domain adaptation |
| keywords[6].id | https://openalex.org/keywords/code |
| keywords[6].score | 0.5238128900527954 |
| keywords[6].display_name | Code (set theory) |
| keywords[7].id | https://openalex.org/keywords/adaptation |
| keywords[7].score | 0.5016641616821289 |
| keywords[7].display_name | Adaptation (eye) |
| keywords[8].id | https://openalex.org/keywords/domain |
| keywords[8].score | 0.5001308917999268 |
| keywords[8].display_name | Domain (mathematical analysis) |
| keywords[9].id | https://openalex.org/keywords/feature |
| keywords[9].score | 0.47731122374534607 |
| keywords[9].display_name | Feature (linguistics) |
| keywords[10].id | https://openalex.org/keywords/task |
| keywords[10].score | 0.46764418482780457 |
| keywords[10].display_name | Task (project management) |
| keywords[11].id | https://openalex.org/keywords/bridge |
| keywords[11].score | 0.44822579622268677 |
| keywords[11].display_name | Bridge (graph theory) |
| keywords[12].id | https://openalex.org/keywords/pattern-recognition |
| keywords[12].score | 0.4397273659706116 |
| keywords[12].display_name | Pattern recognition (psychology) |
| keywords[13].id | https://openalex.org/keywords/machine-learning |
| keywords[13].score | 0.3812065124511719 |
| keywords[13].display_name | Machine learning |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.09541881084442139 |
| keywords[14].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2104.13613 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2104.13613 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2104.13613 |
| locations[1].id | doi:10.48550/arxiv.2104.13613 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2104.13613 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100422802 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6314-4250 |
| authorships[0].author.display_name | Qin Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Qin Wang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5078838951 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5440-9678 |
| authorships[1].author.display_name | Dengxin Dai |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Dengxin Dai |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5053328232 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7391-0676 |
| authorships[2].author.display_name | Lukas Hoyer |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lukas Hoyer |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5079637160 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9546-1488 |
| authorships[3].author.display_name | Olga Fink |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Olga Fink |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5001254143 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3445-5711 |
| authorships[4].author.display_name | Luc Van Gool |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Luc Van Gool |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2104.13613 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11307 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Domain Adaptation and Few-Shot Learning |
| related_works | https://openalex.org/W2378211422, https://openalex.org/W2745001401, https://openalex.org/W4321353415, https://openalex.org/W2130974462, https://openalex.org/W2028665553, https://openalex.org/W2086519370, https://openalex.org/W972276598, https://openalex.org/W4283211831, https://openalex.org/W2798287483, https://openalex.org/W2963261224 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 6 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2104.13613 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2104.13613 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2104.13613 |
| primary_location.id | pmh:oai:arXiv.org:2104.13613 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2104.13613 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2104.13613 |
| publication_date | 2021-04-28 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2970092410, https://openalex.org/W2894308749, https://openalex.org/W2962976523, https://openalex.org/W3035294798, https://openalex.org/W2194775991, https://openalex.org/W2951393419, https://openalex.org/W2949634581, https://openalex.org/W2609883120, https://openalex.org/W3097571420, https://openalex.org/W2964126011, https://openalex.org/W2887964057, https://openalex.org/W2894705404, https://openalex.org/W3009555660, https://openalex.org/W3120562181, https://openalex.org/W2963073217, https://openalex.org/W3034978746, https://openalex.org/W2989631250, https://openalex.org/W3035236545, https://openalex.org/W2963107255, https://openalex.org/W2964185501, https://openalex.org/W2981624307, https://openalex.org/W3034631418, https://openalex.org/W3107909383, https://openalex.org/W3180060752, https://openalex.org/W2300779272, https://openalex.org/W2340897893, https://openalex.org/W3119635706, https://openalex.org/W2165114467, https://openalex.org/W2985406498, https://openalex.org/W2798441115, https://openalex.org/W3109301572, https://openalex.org/W3108566666, https://openalex.org/W2487365028, https://openalex.org/W2963826681, https://openalex.org/W3034247804, https://openalex.org/W1982696459, https://openalex.org/W2962808524, https://openalex.org/W2155830983, https://openalex.org/W3098880233, https://openalex.org/W2115403315, https://openalex.org/W2975758481, https://openalex.org/W3085046840, https://openalex.org/W3112310742, https://openalex.org/W2431874326, https://openalex.org/W2963052201, https://openalex.org/W2895281799, https://openalex.org/W2962864714, https://openalex.org/W3117459969, https://openalex.org/W2963498646, https://openalex.org/W3035524453, https://openalex.org/W3122052861, https://openalex.org/W2985409929, https://openalex.org/W2959581809, https://openalex.org/W2412782625, https://openalex.org/W3034417116, https://openalex.org/W2962802951, https://openalex.org/W2795912842, https://openalex.org/W2972285644 |
| referenced_works_count | 58 |
| abstract_inverted_index.a | 15, 51 |
| abstract_inverted_index.In | 57 |
| abstract_inverted_index.On | 79, 105 |
| abstract_inverted_index.We | 154 |
| abstract_inverted_index.as | 29 |
| abstract_inverted_index.at | 185 |
| abstract_inverted_index.be | 147 |
| abstract_inverted_index.in | 11 |
| abstract_inverted_index.is | 53, 69, 133, 183 |
| abstract_inverted_index.of | 14, 101, 158, 176 |
| abstract_inverted_index.on | 71, 161, 168 |
| abstract_inverted_index.to | 6, 35, 46, 74, 85, 92, 121, 136 |
| abstract_inverted_index.we | 60, 83, 109, 170 |
| abstract_inverted_index.Our | 181 |
| abstract_inverted_index.The | 127, 143 |
| abstract_inverted_index.and | 20, 117, 166, 178 |
| abstract_inverted_index.are | 43 |
| abstract_inverted_index.can | 146 |
| abstract_inverted_index.for | 2 |
| abstract_inverted_index.has | 32 |
| abstract_inverted_index.new | 173 |
| abstract_inverted_index.not | 54 |
| abstract_inverted_index.one | 81 |
| abstract_inverted_index.our | 159 |
| abstract_inverted_index.the | 8, 12, 24, 33, 62, 76, 80, 88, 94, 99, 106, 111, 123, 138, 156, 162, 172 |
| abstract_inverted_index.use | 110 |
| abstract_inverted_index.aims | 5 |
| abstract_inverted_index.both | 72 |
| abstract_inverted_index.code | 182 |
| abstract_inverted_index.each | 47 |
| abstract_inverted_index.from | 26, 64, 115, 131 |
| abstract_inverted_index.gap. | 78 |
| abstract_inverted_index.heal | 36 |
| abstract_inverted_index.help | 100 |
| abstract_inverted_index.into | 150 |
| abstract_inverted_index.many | 40 |
| abstract_inverted_index.such | 50 |
| abstract_inverted_index.task | 89 |
| abstract_inverted_index.then | 134 |
| abstract_inverted_index.this | 37, 58 |
| abstract_inverted_index.used | 135 |
| abstract_inverted_index.with | 98 |
| abstract_inverted_index.depth | 30, 66, 103, 112, 119 |
| abstract_inverted_index.hand, | 82, 108 |
| abstract_inverted_index.learn | 87 |
| abstract_inverted_index.model | 9 |
| abstract_inverted_index.other | 107 |
| abstract_inverted_index.shift | 17, 38 |
| abstract_inverted_index.tasks | 42, 164 |
| abstract_inverted_index.which | 68, 169 |
| abstract_inverted_index.work, | 59 |
| abstract_inverted_index.Domain | 0 |
| abstract_inverted_index.always | 55 |
| abstract_inverted_index.bridge | 75 |
| abstract_inverted_index.depth, | 132 |
| abstract_inverted_index.domain | 77 |
| abstract_inverted_index.easily | 148 |
| abstract_inverted_index.method | 145 |
| abstract_inverted_index.other. | 48 |
| abstract_inverted_index.refine | 137 |
| abstract_inverted_index.source | 19, 116 |
| abstract_inverted_index.target | 21, 95, 102, 118, 139 |
| abstract_inverted_index.visual | 41 |
| abstract_inverted_index.achieve | 171 |
| abstract_inverted_index.because | 39 |
| abstract_inverted_index.between | 18 |
| abstract_inverted_index.closely | 44 |
| abstract_inverted_index.domain. | 22 |
| abstract_inverted_index.feature | 90 |
| abstract_inverted_index.improve | 7 |
| abstract_inverted_index.propose | 84 |
| abstract_inverted_index.related | 45 |
| abstract_inverted_index.$55.0\%$ | 177 |
| abstract_inverted_index.However, | 49 |
| abstract_inverted_index.approach | 160 |
| abstract_inverted_index.decoders | 120 |
| abstract_inverted_index.domains, | 73 |
| abstract_inverted_index.existing | 151 |
| abstract_inverted_index.guidance | 63 |
| abstract_inverted_index.inferred | 130 |
| abstract_inverted_index.leverage | 61 |
| abstract_inverted_index.presence | 13 |
| abstract_inverted_index.proposed | 144 |
| abstract_inverted_index.semantic | 3, 96, 140 |
| abstract_inverted_index.$56.6\%$, | 179 |
| abstract_inverted_index.auxiliary | 27 |
| abstract_inverted_index.available | 70, 184 |
| abstract_inverted_index.benchmark | 163 |
| abstract_inverted_index.potential | 34 |
| abstract_inverted_index.Leveraging | 23 |
| abstract_inverted_index.adaptation | 1, 125, 128 |
| abstract_inverted_index.available. | 56 |
| abstract_inverted_index.explicitly | 86 |
| abstract_inverted_index.pixel-wise | 124 |
| abstract_inverted_index.prediction | 113 |
| abstract_inverted_index.strengthen | 93 |
| abstract_inverted_index.approximate | 122 |
| abstract_inverted_index.correlation | 91 |
| abstract_inverted_index.demonstrate | 155 |
| abstract_inverted_index.difficulty, | 129 |
| abstract_inverted_index.difficulty. | 126 |
| abstract_inverted_index.discrepancy | 114 |
| abstract_inverted_index.estimation) | 31 |
| abstract_inverted_index.estimation, | 67 |
| abstract_inverted_index.estimation. | 104 |
| abstract_inverted_index.frameworks. | 153 |
| abstract_inverted_index.implemented | 149 |
| abstract_inverted_index.performance | 10, 175 |
| abstract_inverted_index.predictions | 97 |
| abstract_inverted_index.supervision | 25, 52 |
| abstract_inverted_index.tasks~(such | 28 |
| abstract_inverted_index.distribution | 16 |
| abstract_inverted_index.segmentation | 4, 141, 152 |
| abstract_inverted_index.effectiveness | 157 |
| abstract_inverted_index.respectively. | 180 |
| abstract_inverted_index.pseudo-labels. | 142 |
| abstract_inverted_index.self-supervised | 65 |
| abstract_inverted_index.state-of-the-art | 174 |
| abstract_inverted_index.GTA-to-Cityscapes, | 167 |
| abstract_inverted_index.SYNTHIA-to-Cityscapes | 165 |
| abstract_inverted_index.\url{https://qin.ee/corda}. | 186 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.8299999833106995 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile |