Domain Generalisation for Object Detection under Covariate and Concept Shift Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2203.05294
Domain generalisation aims to promote the learning of domain-invariant features while suppressing domain-specific features, so that a model can generalise better to previously unseen target domains. An approach to domain generalisation for object detection is proposed, the first such approach applicable to any object detection architecture. Based on a rigorous mathematical analysis, we extend approaches based on feature alignment with a novel component for performing class conditional alignment at the instance level, in addition to aligning the marginal feature distributions across domains at the image level. This allows us to fully address both components of domain shift, i.e. covariate and concept shift, and learn a domain agnostic feature representation. We perform extensive evaluation with both one-stage (FCOS, YOLO) and two-stage (FRCNN) detectors, on a newly proposed benchmark comprising several different datasets for autonomous driving applications (Cityscapes, BDD10K, ACDC, IDD) as well as the GWHD dataset for precision agriculture, and show consistent improvements to the generalisation and localisation performance over baselines and state-of-the-art.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2203.05294
- https://arxiv.org/pdf/2203.05294
- OA Status
- green
- Cited By
- 6
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4226226585
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4226226585Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2203.05294Digital Object Identifier
- Title
-
Domain Generalisation for Object Detection under Covariate and Concept ShiftWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-03-10Full publication date if available
- Authors
-
Karthik Seemakurthy, Charles W. Fox, Erchan Aptoula, Petra BosiljList of authors in order
- Landing page
-
https://arxiv.org/abs/2203.05294Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2203.05294Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2203.05294Direct OA link when available
- Concepts
-
Domain (mathematical analysis), Computer science, Object (grammar), Artificial intelligence, Object detection, Bounding overwatch, Representation (politics), Pattern recognition (psychology), Invariant (physics), Consistency (knowledge bases), Minimum bounding box, Feature (linguistics), Metadata, Algorithm, Image (mathematics), Mathematics, Mathematical analysis, Politics, Operating system, Political science, Law, Mathematical physics, Linguistics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1, 2023: 4Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4226226585 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2203.05294 |
| ids.doi | https://doi.org/10.48550/arxiv.2203.05294 |
| ids.openalex | https://openalex.org/W4226226585 |
| fwci | |
| type | preprint |
| title | Domain Generalisation for Object Detection under Covariate and Concept Shift |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11307 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9962000250816345 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Domain Adaptation and Few-Shot Learning |
| topics[1].id | https://openalex.org/T11714 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9700999855995178 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Multimodal Machine Learning Applications |
| topics[2].id | https://openalex.org/T11775 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9308000206947327 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | COVID-19 diagnosis using AI |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C36503486 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7492710947990417 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[0].display_name | Domain (mathematical analysis) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7081883549690247 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2781238097 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6295818090438843 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[2].display_name | Object (grammar) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6268112659454346 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C2776151529 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5781379342079163 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3045304 |
| concepts[4].display_name | Object detection |
| concepts[5].id | https://openalex.org/C63584917 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5686476230621338 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q333286 |
| concepts[5].display_name | Bounding overwatch |
| concepts[6].id | https://openalex.org/C2776359362 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5656488537788391 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[6].display_name | Representation (politics) |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5352602005004883 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C190470478 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5225785970687866 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2370229 |
| concepts[8].display_name | Invariant (physics) |
| concepts[9].id | https://openalex.org/C2776436953 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5190094709396362 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5163215 |
| concepts[9].display_name | Consistency (knowledge bases) |
| concepts[10].id | https://openalex.org/C147037132 |
| concepts[10].level | 3 |
| concepts[10].score | 0.485139936208725 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q6865426 |
| concepts[10].display_name | Minimum bounding box |
| concepts[11].id | https://openalex.org/C2776401178 |
| concepts[11].level | 2 |
| concepts[11].score | 0.43424293398857117 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[11].display_name | Feature (linguistics) |
| concepts[12].id | https://openalex.org/C93518851 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4155694842338562 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q180160 |
| concepts[12].display_name | Metadata |
| concepts[13].id | https://openalex.org/C11413529 |
| concepts[13].level | 1 |
| concepts[13].score | 0.37609779834747314 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[13].display_name | Algorithm |
| concepts[14].id | https://openalex.org/C115961682 |
| concepts[14].level | 2 |
| concepts[14].score | 0.24355226755142212 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[14].display_name | Image (mathematics) |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.23803246021270752 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C134306372 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[16].display_name | Mathematical analysis |
| concepts[17].id | https://openalex.org/C94625758 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[17].display_name | Politics |
| concepts[18].id | https://openalex.org/C111919701 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[18].display_name | Operating system |
| concepts[19].id | https://openalex.org/C17744445 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[19].display_name | Political science |
| concepts[20].id | https://openalex.org/C199539241 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[20].display_name | Law |
| concepts[21].id | https://openalex.org/C37914503 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q156495 |
| concepts[21].display_name | Mathematical physics |
| concepts[22].id | https://openalex.org/C41895202 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[22].display_name | Linguistics |
| concepts[23].id | https://openalex.org/C138885662 |
| concepts[23].level | 0 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[23].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/domain |
| keywords[0].score | 0.7492710947990417 |
| keywords[0].display_name | Domain (mathematical analysis) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7081883549690247 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/object |
| keywords[2].score | 0.6295818090438843 |
| keywords[2].display_name | Object (grammar) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6268112659454346 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/object-detection |
| keywords[4].score | 0.5781379342079163 |
| keywords[4].display_name | Object detection |
| keywords[5].id | https://openalex.org/keywords/bounding-overwatch |
| keywords[5].score | 0.5686476230621338 |
| keywords[5].display_name | Bounding overwatch |
| keywords[6].id | https://openalex.org/keywords/representation |
| keywords[6].score | 0.5656488537788391 |
| keywords[6].display_name | Representation (politics) |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.5352602005004883 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/invariant |
| keywords[8].score | 0.5225785970687866 |
| keywords[8].display_name | Invariant (physics) |
| keywords[9].id | https://openalex.org/keywords/consistency |
| keywords[9].score | 0.5190094709396362 |
| keywords[9].display_name | Consistency (knowledge bases) |
| keywords[10].id | https://openalex.org/keywords/minimum-bounding-box |
| keywords[10].score | 0.485139936208725 |
| keywords[10].display_name | Minimum bounding box |
| keywords[11].id | https://openalex.org/keywords/feature |
| keywords[11].score | 0.43424293398857117 |
| keywords[11].display_name | Feature (linguistics) |
| keywords[12].id | https://openalex.org/keywords/metadata |
| keywords[12].score | 0.4155694842338562 |
| keywords[12].display_name | Metadata |
| keywords[13].id | https://openalex.org/keywords/algorithm |
| keywords[13].score | 0.37609779834747314 |
| keywords[13].display_name | Algorithm |
| keywords[14].id | https://openalex.org/keywords/image |
| keywords[14].score | 0.24355226755142212 |
| keywords[14].display_name | Image (mathematics) |
| keywords[15].id | https://openalex.org/keywords/mathematics |
| keywords[15].score | 0.23803246021270752 |
| keywords[15].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2203.05294 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2203.05294 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2203.05294 |
| locations[1].id | doi:10.48550/arxiv.2203.05294 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2203.05294 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5068248189 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2954-6149 |
| authorships[0].author.display_name | Karthik Seemakurthy |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Seemakurthy, Karthik |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5072181180 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7545-7967 |
| authorships[1].author.display_name | Charles W. Fox |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Fox, Charles |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5026370111 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6168-2883 |
| authorships[2].author.display_name | Erchan Aptoula |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Aptoula, Erchan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5066673451 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9640-9828 |
| authorships[3].author.display_name | Petra Bosilj |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Bosilj, Petra |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2203.05294 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-05-05T00:00:00 |
| display_name | Domain Generalisation for Object Detection under Covariate and Concept Shift |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11307 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9962000250816345 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Domain Adaptation and Few-Shot Learning |
| related_works | https://openalex.org/W4237171675, https://openalex.org/W3036286480, https://openalex.org/W3192357901, https://openalex.org/W2387360586, https://openalex.org/W4287027631, https://openalex.org/W2952736415, https://openalex.org/W3209723314, https://openalex.org/W3205398323, https://openalex.org/W2883297582, https://openalex.org/W4390524233 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2203.05294 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2203.05294 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2203.05294 |
| primary_location.id | pmh:oai:arXiv.org:2203.05294 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2203.05294 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2203.05294 |
| publication_date | 2022-03-10 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 16, 48, 60, 104, 123 |
| abstract_inverted_index.An | 26 |
| abstract_inverted_index.We | 109 |
| abstract_inverted_index.as | 139, 141 |
| abstract_inverted_index.at | 68, 82 |
| abstract_inverted_index.in | 72 |
| abstract_inverted_index.is | 34 |
| abstract_inverted_index.of | 7, 94 |
| abstract_inverted_index.on | 47, 56, 122 |
| abstract_inverted_index.so | 14 |
| abstract_inverted_index.to | 3, 21, 28, 41, 74, 89, 152 |
| abstract_inverted_index.us | 88 |
| abstract_inverted_index.we | 52 |
| abstract_inverted_index.and | 99, 102, 118, 148, 155, 160 |
| abstract_inverted_index.any | 42 |
| abstract_inverted_index.can | 18 |
| abstract_inverted_index.for | 31, 63, 131, 145 |
| abstract_inverted_index.the | 5, 36, 69, 76, 83, 142, 153 |
| abstract_inverted_index.GWHD | 143 |
| abstract_inverted_index.IDD) | 138 |
| abstract_inverted_index.This | 86 |
| abstract_inverted_index.aims | 2 |
| abstract_inverted_index.both | 92, 114 |
| abstract_inverted_index.i.e. | 97 |
| abstract_inverted_index.over | 158 |
| abstract_inverted_index.show | 149 |
| abstract_inverted_index.such | 38 |
| abstract_inverted_index.that | 15 |
| abstract_inverted_index.well | 140 |
| abstract_inverted_index.with | 59, 113 |
| abstract_inverted_index.ACDC, | 137 |
| abstract_inverted_index.Based | 46 |
| abstract_inverted_index.YOLO) | 117 |
| abstract_inverted_index.based | 55 |
| abstract_inverted_index.class | 65 |
| abstract_inverted_index.first | 37 |
| abstract_inverted_index.fully | 90 |
| abstract_inverted_index.image | 84 |
| abstract_inverted_index.learn | 103 |
| abstract_inverted_index.model | 17 |
| abstract_inverted_index.newly | 124 |
| abstract_inverted_index.novel | 61 |
| abstract_inverted_index.while | 10 |
| abstract_inverted_index.(FCOS, | 116 |
| abstract_inverted_index.Domain | 0 |
| abstract_inverted_index.across | 80 |
| abstract_inverted_index.allows | 87 |
| abstract_inverted_index.better | 20 |
| abstract_inverted_index.domain | 29, 95, 105 |
| abstract_inverted_index.extend | 53 |
| abstract_inverted_index.level, | 71 |
| abstract_inverted_index.level. | 85 |
| abstract_inverted_index.object | 32, 43 |
| abstract_inverted_index.shift, | 96, 101 |
| abstract_inverted_index.target | 24 |
| abstract_inverted_index.unseen | 23 |
| abstract_inverted_index.(FRCNN) | 120 |
| abstract_inverted_index.BDD10K, | 136 |
| abstract_inverted_index.address | 91 |
| abstract_inverted_index.concept | 100 |
| abstract_inverted_index.dataset | 144 |
| abstract_inverted_index.domains | 81 |
| abstract_inverted_index.driving | 133 |
| abstract_inverted_index.feature | 57, 78, 107 |
| abstract_inverted_index.perform | 110 |
| abstract_inverted_index.promote | 4 |
| abstract_inverted_index.several | 128 |
| abstract_inverted_index.addition | 73 |
| abstract_inverted_index.agnostic | 106 |
| abstract_inverted_index.aligning | 75 |
| abstract_inverted_index.approach | 27, 39 |
| abstract_inverted_index.datasets | 130 |
| abstract_inverted_index.domains. | 25 |
| abstract_inverted_index.features | 9 |
| abstract_inverted_index.instance | 70 |
| abstract_inverted_index.learning | 6 |
| abstract_inverted_index.marginal | 77 |
| abstract_inverted_index.proposed | 125 |
| abstract_inverted_index.rigorous | 49 |
| abstract_inverted_index.alignment | 58, 67 |
| abstract_inverted_index.analysis, | 51 |
| abstract_inverted_index.baselines | 159 |
| abstract_inverted_index.benchmark | 126 |
| abstract_inverted_index.component | 62 |
| abstract_inverted_index.covariate | 98 |
| abstract_inverted_index.detection | 33, 44 |
| abstract_inverted_index.different | 129 |
| abstract_inverted_index.extensive | 111 |
| abstract_inverted_index.features, | 13 |
| abstract_inverted_index.one-stage | 115 |
| abstract_inverted_index.precision | 146 |
| abstract_inverted_index.proposed, | 35 |
| abstract_inverted_index.two-stage | 119 |
| abstract_inverted_index.applicable | 40 |
| abstract_inverted_index.approaches | 54 |
| abstract_inverted_index.autonomous | 132 |
| abstract_inverted_index.components | 93 |
| abstract_inverted_index.comprising | 127 |
| abstract_inverted_index.consistent | 150 |
| abstract_inverted_index.detectors, | 121 |
| abstract_inverted_index.evaluation | 112 |
| abstract_inverted_index.generalise | 19 |
| abstract_inverted_index.performing | 64 |
| abstract_inverted_index.previously | 22 |
| abstract_inverted_index.conditional | 66 |
| abstract_inverted_index.performance | 157 |
| abstract_inverted_index.suppressing | 11 |
| abstract_inverted_index.(Cityscapes, | 135 |
| abstract_inverted_index.agriculture, | 147 |
| abstract_inverted_index.applications | 134 |
| abstract_inverted_index.improvements | 151 |
| abstract_inverted_index.localisation | 156 |
| abstract_inverted_index.mathematical | 50 |
| abstract_inverted_index.architecture. | 45 |
| abstract_inverted_index.distributions | 79 |
| abstract_inverted_index.generalisation | 1, 30, 154 |
| abstract_inverted_index.domain-specific | 12 |
| abstract_inverted_index.representation. | 108 |
| abstract_inverted_index.domain-invariant | 8 |
| abstract_inverted_index.state-of-the-art. | 161 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.5199999809265137 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile |