Domain Generalization for Mammographic Image Analysis with Contrastive Learning Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2304.10226
The deep learning technique has been shown to be effectively addressed several image analysis tasks in the computer-aided diagnosis scheme for mammography. The training of an efficacious deep learning model requires large data with diverse styles and qualities. The diversity of data often comes from the use of various scanners of vendors. But, in practice, it is impractical to collect a sufficient amount of diverse data for training. To this end, a novel contrastive learning is developed to equip the deep learning models with better style generalization capability. Specifically, the multi-style and multi-view unsupervised self-learning scheme is carried out to seek robust feature embedding against style diversity as a pretrained model. Afterward, the pretrained network is further fine-tuned to the downstream tasks, e.g., mass detection, matching, BI-RADS rating, and breast density classification. The proposed method has been evaluated extensively and rigorously with mammograms from various vendor style domains and several public datasets. The experimental results suggest that the proposed domain generalization method can effectively improve performance of four mammographic image tasks on the data from both seen and unseen domains, and outperform many state-of-the-art (SOTA) generalization methods.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2304.10226
- https://arxiv.org/pdf/2304.10226
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4366734301
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4366734301Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2304.10226Digital Object Identifier
- Title
-
Domain Generalization for Mammographic Image Analysis with Contrastive LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-04-20Full publication date if available
- Authors
-
Zheren Li, Zhiming Cui, Lichi Zhang, Sheng Wang, Chenjin Lei, Xi Ouyang, Dongdong Chen, Zixu Zhuang, Xiangyu Zhao, Yajia Gu, Zaiyi Liu, Chunling Liu, Dinggang Shen, Jie‐Zhi ChengList of authors in order
- Landing page
-
https://arxiv.org/abs/2304.10226Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2304.10226Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2304.10226Direct OA link when available
- Concepts
-
Generalization, Computer science, Artificial intelligence, Deep learning, Machine learning, Matching (statistics), Image (mathematics), Feature (linguistics), Domain (mathematical analysis), Feature learning, Embedding, Pattern recognition (psychology), Scheme (mathematics), Artificial neural network, Mammography, Mathematics, Linguistics, Breast cancer, Cancer, Medicine, Philosophy, Internal medicine, Mathematical analysis, StatisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4366734301 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2304.10226 |
| ids.doi | https://doi.org/10.48550/arxiv.2304.10226 |
| ids.openalex | https://openalex.org/W4366734301 |
| fwci | |
| type | preprint |
| title | Domain Generalization for Mammographic Image Analysis with Contrastive Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10862 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9986000061035156 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | AI in cancer detection |
| topics[1].id | https://openalex.org/T12422 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9645000100135803 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[2].id | https://openalex.org/T11775 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9023000001907349 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | COVID-19 diagnosis using AI |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C177148314 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8223121166229248 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q170084 |
| concepts[0].display_name | Generalization |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7768785953521729 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.7027837038040161 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C108583219 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5927351713180542 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[3].display_name | Deep learning |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5470304489135742 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C165064840 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5344231724739075 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1321061 |
| concepts[5].display_name | Matching (statistics) |
| concepts[6].id | https://openalex.org/C115961682 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5316033363342285 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[6].display_name | Image (mathematics) |
| concepts[7].id | https://openalex.org/C2776401178 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5143140554428101 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[7].display_name | Feature (linguistics) |
| concepts[8].id | https://openalex.org/C36503486 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5129846930503845 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[8].display_name | Domain (mathematical analysis) |
| concepts[9].id | https://openalex.org/C59404180 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4891417324542999 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q17013334 |
| concepts[9].display_name | Feature learning |
| concepts[10].id | https://openalex.org/C41608201 |
| concepts[10].level | 2 |
| concepts[10].score | 0.47399771213531494 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[10].display_name | Embedding |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.45729127526283264 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C77618280 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4549337327480316 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1155772 |
| concepts[12].display_name | Scheme (mathematics) |
| concepts[13].id | https://openalex.org/C50644808 |
| concepts[13].level | 2 |
| concepts[13].score | 0.45250922441482544 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[13].display_name | Artificial neural network |
| concepts[14].id | https://openalex.org/C2780472235 |
| concepts[14].level | 4 |
| concepts[14].score | 0.4388575255870819 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q324634 |
| concepts[14].display_name | Mammography |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.08270496129989624 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C41895202 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[16].display_name | Linguistics |
| concepts[17].id | https://openalex.org/C530470458 |
| concepts[17].level | 3 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q128581 |
| concepts[17].display_name | Breast cancer |
| concepts[18].id | https://openalex.org/C121608353 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q12078 |
| concepts[18].display_name | Cancer |
| concepts[19].id | https://openalex.org/C71924100 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[19].display_name | Medicine |
| concepts[20].id | https://openalex.org/C138885662 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[20].display_name | Philosophy |
| concepts[21].id | https://openalex.org/C126322002 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[21].display_name | Internal medicine |
| concepts[22].id | https://openalex.org/C134306372 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[22].display_name | Mathematical analysis |
| concepts[23].id | https://openalex.org/C105795698 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[23].display_name | Statistics |
| keywords[0].id | https://openalex.org/keywords/generalization |
| keywords[0].score | 0.8223121166229248 |
| keywords[0].display_name | Generalization |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7768785953521729 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.7027837038040161 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/deep-learning |
| keywords[3].score | 0.5927351713180542 |
| keywords[3].display_name | Deep learning |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.5470304489135742 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/matching |
| keywords[5].score | 0.5344231724739075 |
| keywords[5].display_name | Matching (statistics) |
| keywords[6].id | https://openalex.org/keywords/image |
| keywords[6].score | 0.5316033363342285 |
| keywords[6].display_name | Image (mathematics) |
| keywords[7].id | https://openalex.org/keywords/feature |
| keywords[7].score | 0.5143140554428101 |
| keywords[7].display_name | Feature (linguistics) |
| keywords[8].id | https://openalex.org/keywords/domain |
| keywords[8].score | 0.5129846930503845 |
| keywords[8].display_name | Domain (mathematical analysis) |
| keywords[9].id | https://openalex.org/keywords/feature-learning |
| keywords[9].score | 0.4891417324542999 |
| keywords[9].display_name | Feature learning |
| keywords[10].id | https://openalex.org/keywords/embedding |
| keywords[10].score | 0.47399771213531494 |
| keywords[10].display_name | Embedding |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.45729127526283264 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/scheme |
| keywords[12].score | 0.4549337327480316 |
| keywords[12].display_name | Scheme (mathematics) |
| keywords[13].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[13].score | 0.45250922441482544 |
| keywords[13].display_name | Artificial neural network |
| keywords[14].id | https://openalex.org/keywords/mammography |
| keywords[14].score | 0.4388575255870819 |
| keywords[14].display_name | Mammography |
| keywords[15].id | https://openalex.org/keywords/mathematics |
| keywords[15].score | 0.08270496129989624 |
| keywords[15].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2304.10226 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2304.10226 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2304.10226 |
| locations[1].id | doi:10.48550/arxiv.2304.10226 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2304.10226 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5032615365 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3787-3940 |
| authorships[0].author.display_name | Zheren Li |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Li, Zheren |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100602190 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2960-2051 |
| authorships[1].author.display_name | Zhiming Cui |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Cui, Zhiming |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5006447298 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4396-4566 |
| authorships[2].author.display_name | Lichi Zhang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhang, Lichi |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100371313 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2696-2171 |
| authorships[3].author.display_name | Sheng Wang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wang, Sheng |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5059463878 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Chenjin Lei |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Lei, Chenjin |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5040769857 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7841-5359 |
| authorships[5].author.display_name | Xi Ouyang |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Ouyang, Xi |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5100364587 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-4642-4373 |
| authorships[6].author.display_name | Dongdong Chen |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Chen, Dongdong |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5006020294 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-7451-6999 |
| authorships[7].author.display_name | Zixu Zhuang |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Zhuang, Zixu |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5100645854 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-2926-4416 |
| authorships[8].author.display_name | Xiangyu Zhao |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Zhao, Xiangyu |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5090802873 |
| authorships[9].author.orcid | https://orcid.org/0000-0001-5831-5214 |
| authorships[9].author.display_name | Yajia Gu |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Gu, Yajia |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5112227828 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-9307-8522 |
| authorships[10].author.display_name | Zaiyi Liu |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Liu, Zaiyi |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5100655217 |
| authorships[11].author.orcid | https://orcid.org/0000-0001-5241-7623 |
| authorships[11].author.display_name | Chunling Liu |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Liu, Chunling |
| authorships[11].is_corresponding | False |
| authorships[12].author.id | https://openalex.org/A5000937401 |
| authorships[12].author.orcid | https://orcid.org/0000-0002-7934-5698 |
| authorships[12].author.display_name | Dinggang Shen |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Shen, Dinggang |
| authorships[12].is_corresponding | False |
| authorships[13].author.id | https://openalex.org/A5101455198 |
| authorships[13].author.orcid | https://orcid.org/0000-0003-3446-8173 |
| authorships[13].author.display_name | Jie‐Zhi Cheng |
| authorships[13].author_position | last |
| authorships[13].raw_author_name | Cheng, Jie-Zhi |
| authorships[13].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2304.10226 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-04-24T00:00:00 |
| display_name | Domain Generalization for Mammographic Image Analysis with Contrastive Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10862 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9986000061035156 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | AI in cancer detection |
| related_works | https://openalex.org/W2081900870, https://openalex.org/W3162204513, https://openalex.org/W1514924336, https://openalex.org/W4375867731, https://openalex.org/W2371138613, https://openalex.org/W2048963458, https://openalex.org/W43109613, https://openalex.org/W2359952343, https://openalex.org/W3048601286, https://openalex.org/W2965925734 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2304.10226 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2304.10226 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2304.10226 |
| primary_location.id | pmh:oai:arXiv.org:2304.10226 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2304.10226 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2304.10226 |
| publication_date | 2023-04-20 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 60, 71, 108 |
| abstract_inverted_index.To | 68 |
| abstract_inverted_index.an | 25 |
| abstract_inverted_index.as | 107 |
| abstract_inverted_index.be | 8 |
| abstract_inverted_index.in | 15, 53 |
| abstract_inverted_index.is | 56, 75, 96, 115 |
| abstract_inverted_index.it | 55 |
| abstract_inverted_index.of | 24, 40, 47, 50, 63, 166 |
| abstract_inverted_index.on | 171 |
| abstract_inverted_index.to | 7, 58, 77, 99, 118 |
| abstract_inverted_index.The | 0, 22, 38, 132, 152 |
| abstract_inverted_index.and | 36, 91, 128, 139, 148, 177, 180 |
| abstract_inverted_index.can | 162 |
| abstract_inverted_index.for | 20, 66 |
| abstract_inverted_index.has | 4, 135 |
| abstract_inverted_index.out | 98 |
| abstract_inverted_index.the | 16, 45, 79, 89, 112, 119, 157, 172 |
| abstract_inverted_index.use | 46 |
| abstract_inverted_index.But, | 52 |
| abstract_inverted_index.been | 5, 136 |
| abstract_inverted_index.both | 175 |
| abstract_inverted_index.data | 32, 41, 65, 173 |
| abstract_inverted_index.deep | 1, 27, 80 |
| abstract_inverted_index.end, | 70 |
| abstract_inverted_index.four | 167 |
| abstract_inverted_index.from | 44, 143, 174 |
| abstract_inverted_index.many | 182 |
| abstract_inverted_index.mass | 123 |
| abstract_inverted_index.seek | 100 |
| abstract_inverted_index.seen | 176 |
| abstract_inverted_index.that | 156 |
| abstract_inverted_index.this | 69 |
| abstract_inverted_index.with | 33, 83, 141 |
| abstract_inverted_index.comes | 43 |
| abstract_inverted_index.e.g., | 122 |
| abstract_inverted_index.equip | 78 |
| abstract_inverted_index.image | 12, 169 |
| abstract_inverted_index.large | 31 |
| abstract_inverted_index.model | 29 |
| abstract_inverted_index.novel | 72 |
| abstract_inverted_index.often | 42 |
| abstract_inverted_index.shown | 6 |
| abstract_inverted_index.style | 85, 105, 146 |
| abstract_inverted_index.tasks | 14, 170 |
| abstract_inverted_index.(SOTA) | 184 |
| abstract_inverted_index.amount | 62 |
| abstract_inverted_index.better | 84 |
| abstract_inverted_index.breast | 129 |
| abstract_inverted_index.domain | 159 |
| abstract_inverted_index.method | 134, 161 |
| abstract_inverted_index.model. | 110 |
| abstract_inverted_index.models | 82 |
| abstract_inverted_index.public | 150 |
| abstract_inverted_index.robust | 101 |
| abstract_inverted_index.scheme | 19, 95 |
| abstract_inverted_index.styles | 35 |
| abstract_inverted_index.tasks, | 121 |
| abstract_inverted_index.unseen | 178 |
| abstract_inverted_index.vendor | 145 |
| abstract_inverted_index.BI-RADS | 126 |
| abstract_inverted_index.against | 104 |
| abstract_inverted_index.carried | 97 |
| abstract_inverted_index.collect | 59 |
| abstract_inverted_index.density | 130 |
| abstract_inverted_index.diverse | 34, 64 |
| abstract_inverted_index.domains | 147 |
| abstract_inverted_index.feature | 102 |
| abstract_inverted_index.further | 116 |
| abstract_inverted_index.improve | 164 |
| abstract_inverted_index.network | 114 |
| abstract_inverted_index.rating, | 127 |
| abstract_inverted_index.results | 154 |
| abstract_inverted_index.several | 11, 149 |
| abstract_inverted_index.suggest | 155 |
| abstract_inverted_index.various | 48, 144 |
| abstract_inverted_index.analysis | 13 |
| abstract_inverted_index.domains, | 179 |
| abstract_inverted_index.learning | 2, 28, 74, 81 |
| abstract_inverted_index.methods. | 186 |
| abstract_inverted_index.proposed | 133, 158 |
| abstract_inverted_index.requires | 30 |
| abstract_inverted_index.scanners | 49 |
| abstract_inverted_index.training | 23 |
| abstract_inverted_index.vendors. | 51 |
| abstract_inverted_index.addressed | 10 |
| abstract_inverted_index.datasets. | 151 |
| abstract_inverted_index.developed | 76 |
| abstract_inverted_index.diagnosis | 18 |
| abstract_inverted_index.diversity | 39, 106 |
| abstract_inverted_index.embedding | 103 |
| abstract_inverted_index.evaluated | 137 |
| abstract_inverted_index.matching, | 125 |
| abstract_inverted_index.practice, | 54 |
| abstract_inverted_index.technique | 3 |
| abstract_inverted_index.training. | 67 |
| abstract_inverted_index.Afterward, | 111 |
| abstract_inverted_index.detection, | 124 |
| abstract_inverted_index.downstream | 120 |
| abstract_inverted_index.fine-tuned | 117 |
| abstract_inverted_index.mammograms | 142 |
| abstract_inverted_index.multi-view | 92 |
| abstract_inverted_index.outperform | 181 |
| abstract_inverted_index.pretrained | 109, 113 |
| abstract_inverted_index.qualities. | 37 |
| abstract_inverted_index.rigorously | 140 |
| abstract_inverted_index.sufficient | 61 |
| abstract_inverted_index.capability. | 87 |
| abstract_inverted_index.contrastive | 73 |
| abstract_inverted_index.effectively | 9, 163 |
| abstract_inverted_index.efficacious | 26 |
| abstract_inverted_index.extensively | 138 |
| abstract_inverted_index.impractical | 57 |
| abstract_inverted_index.multi-style | 90 |
| abstract_inverted_index.performance | 165 |
| abstract_inverted_index.experimental | 153 |
| abstract_inverted_index.mammographic | 168 |
| abstract_inverted_index.mammography. | 21 |
| abstract_inverted_index.unsupervised | 93 |
| abstract_inverted_index.Specifically, | 88 |
| abstract_inverted_index.self-learning | 94 |
| abstract_inverted_index.computer-aided | 17 |
| abstract_inverted_index.generalization | 86, 160, 185 |
| abstract_inverted_index.classification. | 131 |
| abstract_inverted_index.state-of-the-art | 183 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 14 |
| citation_normalized_percentile |