Doubly Debiased Test-Time Prompt Tuning for Vision-Language Models Article Swipe
YOU?
·
· 2025
· Open Access
·
Test-time prompt tuning for vision-language models has demonstrated impressive generalization capabilities under zero-shot settings. However, tuning the learnable prompts solely based on unlabeled test data may induce prompt optimization bias, ultimately leading to suboptimal performance on downstream tasks. In this work, we analyze the underlying causes of prompt optimization bias from both the model and data perspectives. In terms of the model, the entropy minimization objective typically focuses on reducing the entropy of model predictions while overlooking their correctness. This can result in overconfident yet incorrect outputs, thereby compromising the quality of prompt optimization. On the data side, prompts affected by optimization bias can introduce misalignment between visual and textual modalities, which further aggravates the prompt optimization bias. To this end, we propose a Doubly Debiased Test-Time Prompt Tuning method. Specifically, we first introduce a dynamic retrieval-augmented modulation module that retrieves high-confidence knowledge from a dynamic knowledge base using the test image feature as a query, and uses the retrieved knowledge to modulate the predictions. Guided by the refined predictions, we further develop a reliability-aware prompt optimization module that incorporates a confidence-based weighted ensemble and cross-modal consistency distillation to impose regularization constraints during prompt tuning. Extensive experiments across 15 benchmark datasets involving both natural distribution shifts and cross-datasets generalization demonstrate that our method outperforms baselines, validating its effectiveness in mitigating prompt optimization bias.
Related Topics
- Type
- article
- Landing Page
- http://arxiv.org/abs/2511.11690
- https://arxiv.org/pdf/2511.11690
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7106094599
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7106094599Canonical identifier for this work in OpenAlex
- Title
-
Doubly Debiased Test-Time Prompt Tuning for Vision-Language ModelsWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-12Full publication date if available
- Authors
-
Song Fei, Li Yi, Wang Rui, Zhou, Jiahuan, Zheng, Changwen, Li, JiangmengList of authors in order
- Landing page
-
https://arxiv.org/abs/2511.11690Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2511.11690Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2511.11690Direct OA link when available
- Concepts
-
Computer science, Minification, Entropy (arrow of time), Artificial intelligence, Optimization problem, Generalization, Machine learning, Consistency (knowledge bases), Regularization (linguistics), Test data, Benchmark (surveying), Optimization algorithm, Synthetic data, Feature (linguistics), Data modeling, Cross entropy, Kullback–Leibler divergence, Algorithm, Data qualityTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7106094599 |
|---|---|
| doi | |
| ids.openalex | https://openalex.org/W7106094599 |
| fwci | 0.0 |
| type | article |
| title | Doubly Debiased Test-Time Prompt Tuning for Vision-Language Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11714 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9861314296722412 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Multimodal Machine Learning Applications |
| topics[1].id | https://openalex.org/T11307 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.004810106009244919 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Domain Adaptation and Few-Shot Learning |
| topics[2].id | https://openalex.org/T10775 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.0012025665491819382 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Generative Adversarial Networks and Image Synthesis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6734042167663574 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C147764199 |
| concepts[1].level | 2 |
| concepts[1].score | 0.46756699681282043 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6865248 |
| concepts[1].display_name | Minification |
| concepts[2].id | https://openalex.org/C106301342 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4559573531150818 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q4117933 |
| concepts[2].display_name | Entropy (arrow of time) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.44454845786094666 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C137836250 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4429638683795929 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q984063 |
| concepts[4].display_name | Optimization problem |
| concepts[5].id | https://openalex.org/C177148314 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4385063648223877 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q170084 |
| concepts[5].display_name | Generalization |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.43485841155052185 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C2776436953 |
| concepts[7].level | 2 |
| concepts[7].score | 0.38155147433280945 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5163215 |
| concepts[7].display_name | Consistency (knowledge bases) |
| concepts[8].id | https://openalex.org/C2776135515 |
| concepts[8].level | 2 |
| concepts[8].score | 0.3667961359024048 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q17143721 |
| concepts[8].display_name | Regularization (linguistics) |
| concepts[9].id | https://openalex.org/C16910744 |
| concepts[9].level | 2 |
| concepts[9].score | 0.3509783148765564 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7705759 |
| concepts[9].display_name | Test data |
| concepts[10].id | https://openalex.org/C185798385 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3446303606033325 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[10].display_name | Benchmark (surveying) |
| concepts[11].id | https://openalex.org/C2987595161 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3386799991130829 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[11].display_name | Optimization algorithm |
| concepts[12].id | https://openalex.org/C160920958 |
| concepts[12].level | 2 |
| concepts[12].score | 0.3254455626010895 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7662746 |
| concepts[12].display_name | Synthetic data |
| concepts[13].id | https://openalex.org/C2776401178 |
| concepts[13].level | 2 |
| concepts[13].score | 0.3159135580062866 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[13].display_name | Feature (linguistics) |
| concepts[14].id | https://openalex.org/C67186912 |
| concepts[14].level | 2 |
| concepts[14].score | 0.2802399694919586 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q367664 |
| concepts[14].display_name | Data modeling |
| concepts[15].id | https://openalex.org/C167981619 |
| concepts[15].level | 3 |
| concepts[15].score | 0.26586246490478516 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1685498 |
| concepts[15].display_name | Cross entropy |
| concepts[16].id | https://openalex.org/C171752962 |
| concepts[16].level | 2 |
| concepts[16].score | 0.2610611021518707 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q255166 |
| concepts[16].display_name | Kullback–Leibler divergence |
| concepts[17].id | https://openalex.org/C11413529 |
| concepts[17].level | 1 |
| concepts[17].score | 0.2507636845111847 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[17].display_name | Algorithm |
| concepts[18].id | https://openalex.org/C24756922 |
| concepts[18].level | 3 |
| concepts[18].score | 0.2505039572715759 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1757694 |
| concepts[18].display_name | Data quality |
| keywords[0].id | https://openalex.org/keywords/minification |
| keywords[0].score | 0.46756699681282043 |
| keywords[0].display_name | Minification |
| keywords[1].id | https://openalex.org/keywords/entropy |
| keywords[1].score | 0.4559573531150818 |
| keywords[1].display_name | Entropy (arrow of time) |
| keywords[2].id | https://openalex.org/keywords/optimization-problem |
| keywords[2].score | 0.4429638683795929 |
| keywords[2].display_name | Optimization problem |
| keywords[3].id | https://openalex.org/keywords/generalization |
| keywords[3].score | 0.4385063648223877 |
| keywords[3].display_name | Generalization |
| keywords[4].id | https://openalex.org/keywords/consistency |
| keywords[4].score | 0.38155147433280945 |
| keywords[4].display_name | Consistency (knowledge bases) |
| keywords[5].id | https://openalex.org/keywords/regularization |
| keywords[5].score | 0.3667961359024048 |
| keywords[5].display_name | Regularization (linguistics) |
| keywords[6].id | https://openalex.org/keywords/test-data |
| keywords[6].score | 0.3509783148765564 |
| keywords[6].display_name | Test data |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2511.11690 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2511.11690 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2511.11690 |
| indexed_in | arxiv |
| authorships[0].author.id | https://openalex.org/A2096692502 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3968-0344 |
| authorships[0].author.display_name | Song Fei |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Song, Fei |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | https://openalex.org/A1896882427 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6018-0793 |
| authorships[1].author.display_name | Li Yi |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Li, Yi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A1686891224 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2784-2764 |
| authorships[2].author.display_name | Wang Rui |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wang, Rui |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A3163318813 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Zhou, Jiahuan |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhou, Jiahuan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A2060339975 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Zheng, Changwen |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zheng, Changwen |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A4221812885 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Li, Jiangmeng |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Li, Jiangmeng |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2511.11690 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-19T00:00:00 |
| display_name | Doubly Debiased Test-Time Prompt Tuning for Vision-Language Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-19T23:39:43.309859 |
| primary_topic.id | https://openalex.org/T11714 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9861314296722412 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Multimodal Machine Learning Applications |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:arXiv.org:2511.11690 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2511.11690 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2511.11690 |
| primary_location.id | pmh:oai:arXiv.org:2511.11690 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2511.11690 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2511.11690 |
| publication_date | 2025-11-12 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 123, 134, 144, 154, 173, 180 |
| abstract_inverted_index.15 | 198 |
| abstract_inverted_index.In | 38, 57 |
| abstract_inverted_index.On | 94 |
| abstract_inverted_index.To | 118 |
| abstract_inverted_index.as | 153 |
| abstract_inverted_index.by | 100, 166 |
| abstract_inverted_index.in | 82, 218 |
| abstract_inverted_index.of | 46, 59, 72, 91 |
| abstract_inverted_index.on | 21, 35, 68 |
| abstract_inverted_index.to | 32, 161, 188 |
| abstract_inverted_index.we | 41, 121, 131, 170 |
| abstract_inverted_index.and | 54, 108, 156, 184, 206 |
| abstract_inverted_index.can | 80, 103 |
| abstract_inverted_index.for | 3 |
| abstract_inverted_index.has | 6 |
| abstract_inverted_index.its | 216 |
| abstract_inverted_index.may | 25 |
| abstract_inverted_index.our | 211 |
| abstract_inverted_index.the | 16, 43, 52, 60, 62, 70, 89, 95, 114, 149, 158, 163, 167 |
| abstract_inverted_index.yet | 84 |
| abstract_inverted_index.This | 79 |
| abstract_inverted_index.base | 147 |
| abstract_inverted_index.bias | 49, 102 |
| abstract_inverted_index.both | 51, 202 |
| abstract_inverted_index.data | 24, 55, 96 |
| abstract_inverted_index.end, | 120 |
| abstract_inverted_index.from | 50, 143 |
| abstract_inverted_index.test | 23, 150 |
| abstract_inverted_index.that | 139, 178, 210 |
| abstract_inverted_index.this | 39, 119 |
| abstract_inverted_index.uses | 157 |
| abstract_inverted_index.based | 20 |
| abstract_inverted_index.bias, | 29 |
| abstract_inverted_index.bias. | 117, 222 |
| abstract_inverted_index.first | 132 |
| abstract_inverted_index.image | 151 |
| abstract_inverted_index.model | 53, 73 |
| abstract_inverted_index.side, | 97 |
| abstract_inverted_index.terms | 58 |
| abstract_inverted_index.their | 77 |
| abstract_inverted_index.under | 11 |
| abstract_inverted_index.using | 148 |
| abstract_inverted_index.which | 111 |
| abstract_inverted_index.while | 75 |
| abstract_inverted_index.work, | 40 |
| abstract_inverted_index.Doubly | 124 |
| abstract_inverted_index.Guided | 165 |
| abstract_inverted_index.Prompt | 127 |
| abstract_inverted_index.Tuning | 128 |
| abstract_inverted_index.across | 197 |
| abstract_inverted_index.causes | 45 |
| abstract_inverted_index.during | 192 |
| abstract_inverted_index.impose | 189 |
| abstract_inverted_index.induce | 26 |
| abstract_inverted_index.method | 212 |
| abstract_inverted_index.model, | 61 |
| abstract_inverted_index.models | 5 |
| abstract_inverted_index.module | 138, 177 |
| abstract_inverted_index.prompt | 1, 27, 47, 92, 115, 175, 193, 220 |
| abstract_inverted_index.query, | 155 |
| abstract_inverted_index.result | 81 |
| abstract_inverted_index.shifts | 205 |
| abstract_inverted_index.solely | 19 |
| abstract_inverted_index.tasks. | 37 |
| abstract_inverted_index.tuning | 2, 15 |
| abstract_inverted_index.visual | 107 |
| abstract_inverted_index.analyze | 42 |
| abstract_inverted_index.between | 106 |
| abstract_inverted_index.develop | 172 |
| abstract_inverted_index.dynamic | 135, 145 |
| abstract_inverted_index.entropy | 63, 71 |
| abstract_inverted_index.feature | 152 |
| abstract_inverted_index.focuses | 67 |
| abstract_inverted_index.further | 112, 171 |
| abstract_inverted_index.leading | 31 |
| abstract_inverted_index.method. | 129 |
| abstract_inverted_index.natural | 203 |
| abstract_inverted_index.prompts | 18, 98 |
| abstract_inverted_index.propose | 122 |
| abstract_inverted_index.quality | 90 |
| abstract_inverted_index.refined | 168 |
| abstract_inverted_index.textual | 109 |
| abstract_inverted_index.thereby | 87 |
| abstract_inverted_index.tuning. | 194 |
| abstract_inverted_index.Debiased | 125 |
| abstract_inverted_index.However, | 14 |
| abstract_inverted_index.affected | 99 |
| abstract_inverted_index.datasets | 200 |
| abstract_inverted_index.ensemble | 183 |
| abstract_inverted_index.modulate | 162 |
| abstract_inverted_index.outputs, | 86 |
| abstract_inverted_index.reducing | 69 |
| abstract_inverted_index.weighted | 182 |
| abstract_inverted_index.Extensive | 195 |
| abstract_inverted_index.Test-Time | 126 |
| abstract_inverted_index.Test-time | 0 |
| abstract_inverted_index.benchmark | 199 |
| abstract_inverted_index.incorrect | 85 |
| abstract_inverted_index.introduce | 104, 133 |
| abstract_inverted_index.involving | 201 |
| abstract_inverted_index.knowledge | 142, 146, 160 |
| abstract_inverted_index.learnable | 17 |
| abstract_inverted_index.objective | 65 |
| abstract_inverted_index.retrieved | 159 |
| abstract_inverted_index.retrieves | 140 |
| abstract_inverted_index.settings. | 13 |
| abstract_inverted_index.typically | 66 |
| abstract_inverted_index.unlabeled | 22 |
| abstract_inverted_index.zero-shot | 12 |
| abstract_inverted_index.aggravates | 113 |
| abstract_inverted_index.baselines, | 214 |
| abstract_inverted_index.downstream | 36 |
| abstract_inverted_index.impressive | 8 |
| abstract_inverted_index.mitigating | 219 |
| abstract_inverted_index.modulation | 137 |
| abstract_inverted_index.suboptimal | 33 |
| abstract_inverted_index.ultimately | 30 |
| abstract_inverted_index.underlying | 44 |
| abstract_inverted_index.validating | 215 |
| abstract_inverted_index.consistency | 186 |
| abstract_inverted_index.constraints | 191 |
| abstract_inverted_index.cross-modal | 185 |
| abstract_inverted_index.demonstrate | 209 |
| abstract_inverted_index.experiments | 196 |
| abstract_inverted_index.modalities, | 110 |
| abstract_inverted_index.outperforms | 213 |
| abstract_inverted_index.overlooking | 76 |
| abstract_inverted_index.performance | 34 |
| abstract_inverted_index.predictions | 74 |
| abstract_inverted_index.capabilities | 10 |
| abstract_inverted_index.compromising | 88 |
| abstract_inverted_index.correctness. | 78 |
| abstract_inverted_index.demonstrated | 7 |
| abstract_inverted_index.distillation | 187 |
| abstract_inverted_index.distribution | 204 |
| abstract_inverted_index.incorporates | 179 |
| abstract_inverted_index.minimization | 64 |
| abstract_inverted_index.misalignment | 105 |
| abstract_inverted_index.optimization | 28, 48, 101, 116, 176, 221 |
| abstract_inverted_index.predictions, | 169 |
| abstract_inverted_index.predictions. | 164 |
| abstract_inverted_index.Specifically, | 130 |
| abstract_inverted_index.effectiveness | 217 |
| abstract_inverted_index.optimization. | 93 |
| abstract_inverted_index.overconfident | 83 |
| abstract_inverted_index.perspectives. | 56 |
| abstract_inverted_index.cross-datasets | 207 |
| abstract_inverted_index.generalization | 9, 208 |
| abstract_inverted_index.regularization | 190 |
| abstract_inverted_index.high-confidence | 141 |
| abstract_inverted_index.vision-language | 4 |
| abstract_inverted_index.confidence-based | 181 |
| abstract_inverted_index.reliability-aware | 174 |
| abstract_inverted_index.retrieval-augmented | 136 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.84128267 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |