DP-FWCA: A Prompt-Enhanced Model for Named Entity Recognition in Educational Domains Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/access.2025.3590851
The digital transformation in education has spurred a rapid expansion of academic literature, pedagogical resources, and institutional knowledge, intensifying the demand for efficient automated information extraction. However, the inherent complexity and contextual variability of educational texts, compounded by a limited supply of domain-specific annotated data, impose formidable challenges on conventional NER methods. To address these challenges, we propose the Domain-adaptive Prompt Feature-Weighted CNN-Attention-CRF (DP-FWCA), a novel framework specifically designed for educational NER. Our approach integrates domain-adaptive prompting to direct attention toward critical educational semantics, BERT-based contextual embeddings for robust representation learning, multi-scale convolutional neural networks (CNNs) with gated feature fusion to capture fine-grained local features, bidirectional LSTM networks augmented with self-attention to model long-range dependencies, and conditional random fields (CRFs) for structured sequence labeling. Evaluations on the EduNER and MSRA datasets reveal that the DP-FWCA model achieves F1-scores of 87.72% and 95.12%. These results underscore the promise of our integrated approach in overcoming the intrinsic challenges of educational texts, thereby advancing automated knowledge extraction and supporting the development of more intelligent educational systems.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2025.3590851
- OA Status
- gold
- References
- 54
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412536438
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412536438Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2025.3590851Digital Object Identifier
- Title
-
DP-FWCA: A Prompt-Enhanced Model for Named Entity Recognition in Educational DomainsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Zhenkai Qin, Dongze Wu, Jiajing He, Jingming Xie, Aimin WeiList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2025.3590851Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/access.2025.3590851Direct OA link when available
- Concepts
-
Computer science, Named-entity recognition, Natural language processing, Artificial intelligence, Engineering, Task (project management), Systems engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
54Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412536438 |
|---|---|
| doi | https://doi.org/10.1109/access.2025.3590851 |
| ids.doi | https://doi.org/10.1109/access.2025.3590851 |
| ids.openalex | https://openalex.org/W4412536438 |
| fwci | 0.0 |
| type | article |
| title | DP-FWCA: A Prompt-Enhanced Model for Named Entity Recognition in Educational Domains |
| biblio.issue | |
| biblio.volume | 13 |
| biblio.last_page | 129268 |
| biblio.first_page | 129250 |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.991100013256073 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T10181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9643999934196472 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Natural Language Processing Techniques |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7308931350708008 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2779135771 |
| concepts[1].level | 3 |
| concepts[1].score | 0.45093995332717896 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q403574 |
| concepts[1].display_name | Named-entity recognition |
| concepts[2].id | https://openalex.org/C204321447 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4262952506542206 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[2].display_name | Natural language processing |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3717411756515503 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C127413603 |
| concepts[4].level | 0 |
| concepts[4].score | 0.0820053219795227 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[4].display_name | Engineering |
| concepts[5].id | https://openalex.org/C2780451532 |
| concepts[5].level | 2 |
| concepts[5].score | 0.0 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[5].display_name | Task (project management) |
| concepts[6].id | https://openalex.org/C201995342 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[6].display_name | Systems engineering |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7308931350708008 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/named-entity-recognition |
| keywords[1].score | 0.45093995332717896 |
| keywords[1].display_name | Named-entity recognition |
| keywords[2].id | https://openalex.org/keywords/natural-language-processing |
| keywords[2].score | 0.4262952506542206 |
| keywords[2].display_name | Natural language processing |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.3717411756515503 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/engineering |
| keywords[4].score | 0.0820053219795227 |
| keywords[4].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1109/access.2025.3590851 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2025.3590851 |
| locations[1].id | pmh:oai:doaj.org/article:d1f822327e974fe8b5d6a5dd9992725d |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 13, Pp 129250-129268 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/d1f822327e974fe8b5d6a5dd9992725d |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5029477732 |
| authorships[0].author.orcid | https://orcid.org/0009-0002-8862-2439 |
| authorships[0].author.display_name | Zhenkai Qin |
| authorships[0].affiliations[0].raw_affiliation_string | School of Information Technology, Guangxi Police College, Nanning, China |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhenkai Qin |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Information Technology, Guangxi Police College, Nanning, China |
| authorships[1].author.id | https://openalex.org/A5100771817 |
| authorships[1].author.orcid | https://orcid.org/0009-0001-9795-7452 |
| authorships[1].author.display_name | Dongze Wu |
| authorships[1].affiliations[0].raw_affiliation_string | School of Information Technology, Guangxi Police College, Nanning, China |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Dongze Wu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Information Technology, Guangxi Police College, Nanning, China |
| authorships[2].author.id | https://openalex.org/A5006490454 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Jiajing He |
| authorships[2].affiliations[0].raw_affiliation_string | School of Information Technology, Guangxi Police College, Nanning, China |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jiajing He |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Information Technology, Guangxi Police College, Nanning, China |
| authorships[3].author.id | https://openalex.org/A5103166003 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5974-8871 |
| authorships[3].author.display_name | Jingming Xie |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210151929 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Digital Economics, Nanning University, Nanning, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210151929 |
| authorships[3].institutions[0].ror | https://ror.org/04dx82x73 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210151929 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Nanning Normal University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jingming Xie |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Digital Economics, Nanning University, Nanning, China |
| authorships[4].author.id | https://openalex.org/A5045625777 |
| authorships[4].author.orcid | https://orcid.org/0009-0006-7857-206X |
| authorships[4].author.display_name | Aimin Wei |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210104080 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Architectural Engineering, Guangzhou Panyu Polytechnic, Guangzhou, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210104080 |
| authorships[4].institutions[0].ror | https://ror.org/01j9jcf33 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210104080 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Guangzhou Panyu Polytechnic |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Aimin Wei |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Architectural Engineering, Guangzhou Panyu Polytechnic, Guangzhou, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/access.2025.3590851 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | DP-FWCA: A Prompt-Enhanced Model for Named Entity Recognition in Educational Domains |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.991100013256073 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W3017222382, https://openalex.org/W3128216712, https://openalex.org/W3204019825, https://openalex.org/W3136915866, https://openalex.org/W4390279576, https://openalex.org/W2886890203, https://openalex.org/W4313535650, https://openalex.org/W2287770975 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2025.3590851 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2025.3590851 |
| primary_location.id | doi:10.1109/access.2025.3590851 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2025.3590851 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3200178223, https://openalex.org/W3011594683, https://openalex.org/W3025019965, https://openalex.org/W4408017252, https://openalex.org/W4410040546, https://openalex.org/W4396955619, https://openalex.org/W6636820657, https://openalex.org/W1762294788, https://openalex.org/W4408472883, https://openalex.org/W3215317537, https://openalex.org/W4392387254, https://openalex.org/W4377136881, https://openalex.org/W2141869602, https://openalex.org/W2682408236, https://openalex.org/W2330149175, https://openalex.org/W2109711517, https://openalex.org/W2132038179, https://openalex.org/W4220799018, https://openalex.org/W6755207826, https://openalex.org/W2965373594, https://openalex.org/W6761910064, https://openalex.org/W4281729944, https://openalex.org/W4385481375, https://openalex.org/W3173587986, https://openalex.org/W4387713113, https://openalex.org/W4391858176, https://openalex.org/W4407360823, https://openalex.org/W2962902328, https://openalex.org/W2967649271, https://openalex.org/W4401035123, https://openalex.org/W2982933447, https://openalex.org/W6778883912, https://openalex.org/W6790003725, https://openalex.org/W4407761215, https://openalex.org/W4323313400, https://openalex.org/W4404542582, https://openalex.org/W4283735109, https://openalex.org/W2994356318, https://openalex.org/W4396510943, https://openalex.org/W4289524707, https://openalex.org/W6871553294, https://openalex.org/W2137758646, https://openalex.org/W6877668540, https://openalex.org/W6875123106, https://openalex.org/W6775180354, https://openalex.org/W2192203593, https://openalex.org/W3028852288, https://openalex.org/W2954743925, https://openalex.org/W6730169791, https://openalex.org/W2109863804, https://openalex.org/W4408365762, https://openalex.org/W4407955254, https://openalex.org/W4372268731, https://openalex.org/W4402769626 |
| referenced_works_count | 54 |
| abstract_inverted_index.a | 7, 38, 64 |
| abstract_inverted_index.To | 52 |
| abstract_inverted_index.by | 37 |
| abstract_inverted_index.in | 3, 151 |
| abstract_inverted_index.of | 10, 33, 41, 138, 147, 156, 168 |
| abstract_inverted_index.on | 48, 125 |
| abstract_inverted_index.to | 77, 100, 111 |
| abstract_inverted_index.we | 56 |
| abstract_inverted_index.NER | 50 |
| abstract_inverted_index.Our | 72 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 15, 30, 115, 128, 140, 164 |
| abstract_inverted_index.for | 21, 69, 87, 120 |
| abstract_inverted_index.has | 5 |
| abstract_inverted_index.our | 148 |
| abstract_inverted_index.the | 19, 27, 58, 126, 133, 145, 153, 166 |
| abstract_inverted_index.LSTM | 106 |
| abstract_inverted_index.MSRA | 129 |
| abstract_inverted_index.NER. | 71 |
| abstract_inverted_index.more | 169 |
| abstract_inverted_index.that | 132 |
| abstract_inverted_index.with | 96, 109 |
| abstract_inverted_index.These | 142 |
| abstract_inverted_index.data, | 44 |
| abstract_inverted_index.gated | 97 |
| abstract_inverted_index.local | 103 |
| abstract_inverted_index.model | 112, 135 |
| abstract_inverted_index.novel | 65 |
| abstract_inverted_index.rapid | 8 |
| abstract_inverted_index.these | 54 |
| abstract_inverted_index.(CNNs) | 95 |
| abstract_inverted_index.(CRFs) | 119 |
| abstract_inverted_index.87.72% | 139 |
| abstract_inverted_index.EduNER | 127 |
| abstract_inverted_index.Prompt | 60 |
| abstract_inverted_index.demand | 20 |
| abstract_inverted_index.direct | 78 |
| abstract_inverted_index.fields | 118 |
| abstract_inverted_index.fusion | 99 |
| abstract_inverted_index.impose | 45 |
| abstract_inverted_index.neural | 93 |
| abstract_inverted_index.random | 117 |
| abstract_inverted_index.reveal | 131 |
| abstract_inverted_index.robust | 88 |
| abstract_inverted_index.supply | 40 |
| abstract_inverted_index.texts, | 35, 158 |
| abstract_inverted_index.toward | 80 |
| abstract_inverted_index.95.12%. | 141 |
| abstract_inverted_index.DP-FWCA | 134 |
| abstract_inverted_index.address | 53 |
| abstract_inverted_index.capture | 101 |
| abstract_inverted_index.digital | 1 |
| abstract_inverted_index.feature | 98 |
| abstract_inverted_index.limited | 39 |
| abstract_inverted_index.promise | 146 |
| abstract_inverted_index.propose | 57 |
| abstract_inverted_index.results | 143 |
| abstract_inverted_index.spurred | 6 |
| abstract_inverted_index.thereby | 159 |
| abstract_inverted_index.However, | 26 |
| abstract_inverted_index.academic | 11 |
| abstract_inverted_index.achieves | 136 |
| abstract_inverted_index.approach | 73, 150 |
| abstract_inverted_index.critical | 81 |
| abstract_inverted_index.datasets | 130 |
| abstract_inverted_index.designed | 68 |
| abstract_inverted_index.inherent | 28 |
| abstract_inverted_index.methods. | 51 |
| abstract_inverted_index.networks | 94, 107 |
| abstract_inverted_index.sequence | 122 |
| abstract_inverted_index.systems. | 172 |
| abstract_inverted_index.F1-scores | 137 |
| abstract_inverted_index.advancing | 160 |
| abstract_inverted_index.annotated | 43 |
| abstract_inverted_index.attention | 79 |
| abstract_inverted_index.augmented | 108 |
| abstract_inverted_index.automated | 23, 161 |
| abstract_inverted_index.education | 4 |
| abstract_inverted_index.efficient | 22 |
| abstract_inverted_index.expansion | 9 |
| abstract_inverted_index.features, | 104 |
| abstract_inverted_index.framework | 66 |
| abstract_inverted_index.intrinsic | 154 |
| abstract_inverted_index.knowledge | 162 |
| abstract_inverted_index.labeling. | 123 |
| abstract_inverted_index.learning, | 90 |
| abstract_inverted_index.prompting | 76 |
| abstract_inverted_index.(DP-FWCA), | 63 |
| abstract_inverted_index.BERT-based | 84 |
| abstract_inverted_index.challenges | 47, 155 |
| abstract_inverted_index.complexity | 29 |
| abstract_inverted_index.compounded | 36 |
| abstract_inverted_index.contextual | 31, 85 |
| abstract_inverted_index.embeddings | 86 |
| abstract_inverted_index.extraction | 163 |
| abstract_inverted_index.formidable | 46 |
| abstract_inverted_index.integrated | 149 |
| abstract_inverted_index.integrates | 74 |
| abstract_inverted_index.knowledge, | 17 |
| abstract_inverted_index.long-range | 113 |
| abstract_inverted_index.overcoming | 152 |
| abstract_inverted_index.resources, | 14 |
| abstract_inverted_index.semantics, | 83 |
| abstract_inverted_index.structured | 121 |
| abstract_inverted_index.supporting | 165 |
| abstract_inverted_index.underscore | 144 |
| abstract_inverted_index.Evaluations | 124 |
| abstract_inverted_index.challenges, | 55 |
| abstract_inverted_index.conditional | 116 |
| abstract_inverted_index.development | 167 |
| abstract_inverted_index.educational | 34, 70, 82, 157, 171 |
| abstract_inverted_index.extraction. | 25 |
| abstract_inverted_index.information | 24 |
| abstract_inverted_index.intelligent | 170 |
| abstract_inverted_index.literature, | 12 |
| abstract_inverted_index.multi-scale | 91 |
| abstract_inverted_index.pedagogical | 13 |
| abstract_inverted_index.variability | 32 |
| abstract_inverted_index.conventional | 49 |
| abstract_inverted_index.fine-grained | 102 |
| abstract_inverted_index.intensifying | 18 |
| abstract_inverted_index.specifically | 67 |
| abstract_inverted_index.bidirectional | 105 |
| abstract_inverted_index.convolutional | 92 |
| abstract_inverted_index.dependencies, | 114 |
| abstract_inverted_index.institutional | 16 |
| abstract_inverted_index.representation | 89 |
| abstract_inverted_index.self-attention | 110 |
| abstract_inverted_index.transformation | 2 |
| abstract_inverted_index.Domain-adaptive | 59 |
| abstract_inverted_index.domain-adaptive | 75 |
| abstract_inverted_index.domain-specific | 42 |
| abstract_inverted_index.Feature-Weighted | 61 |
| abstract_inverted_index.CNN-Attention-CRF | 62 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.12989934 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |