DPA-HairNet: A Dual Encoder Attention Based Network for Hair Artifact Removal in Dermoscopic Images Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/access.2025.3585353
Hair artifacts in dermoscopic images significantly hinder the accurate diagnosis of melanoma and other skin conditions by obscuring critical lesion details. To address this challenge, we introduce DPA-HairNet, a novel Dual Encoder Attention-Based Network designed specifically for effective hair artifact removal while preserving lesion integrity. The model features a dual encoder architecture to separately process hair-specific and lesion-specific features, an attention mechanism to prioritize diagnostically relevant regions, and a dual-output design that generates precise hair segmentation masks and high-quality reconstructed images. This study leverages the ISIC 2018 and HAM10000 datasets, incorporating advanced data augmentation techniques to enhance dataset diversity and ensure robust model training. DPA-HairNet was evaluated against six state-of-the-art segmentation models using comprehensive metrics, including Accuracy, Dice Coefficient, Jaccard Index, PSNR, MAE, Specificity, Precision, Recall, and F1-Score, where the proposed model outperformed all models. Furthermore, classification performance was assessed before and after hair artifact removal using twelve pre-trained classifiers, demonstrating significant improvements in diagnostic accuracy. Explainable AI techniques, Grad-CAM, UMAP and attention heatmaps, were employed to interpret and validate the model’s focus. These results underscore DPA-HairNet’s effectiveness and potential integration into clinical workflows to enhance dermoscopic image analysis and diagnosis. Future work will explore generalization to additional artifact types and optimization for real-time clinical deployment.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2025.3585353
- OA Status
- gold
- References
- 84
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411949217
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411949217Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2025.3585353Digital Object Identifier
- Title
-
DPA-HairNet: A Dual Encoder Attention Based Network for Hair Artifact Removal in Dermoscopic ImagesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
F. M. Javed Mehedi Shamrat, Mohd Yamani Idna Idris, Chowdhury Forhadul Karim, Xujuan Zhou, Raj GururajanList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2025.3585353Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/access.2025.3585353Direct OA link when available
- Concepts
-
Artifact (error), Computer science, Dual (grammatical number), Encoder, Computer vision, Artificial intelligence, Art, Operating system, LiteratureTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
84Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411949217 |
|---|---|
| doi | https://doi.org/10.1109/access.2025.3585353 |
| ids.doi | https://doi.org/10.1109/access.2025.3585353 |
| ids.openalex | https://openalex.org/W4411949217 |
| fwci | 0.0 |
| type | article |
| title | DPA-HairNet: A Dual Encoder Attention Based Network for Hair Artifact Removal in Dermoscopic Images |
| biblio.issue | |
| biblio.volume | 13 |
| biblio.last_page | 118211 |
| biblio.first_page | 118185 |
| topics[0].id | https://openalex.org/T10392 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9872000217437744 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2730 |
| topics[0].subfield.display_name | Oncology |
| topics[0].display_name | Cutaneous Melanoma Detection and Management |
| topics[1].id | https://openalex.org/T11167 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9556999802589417 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2748 |
| topics[1].subfield.display_name | Urology |
| topics[1].display_name | Hair Growth and Disorders |
| topics[2].id | https://openalex.org/T10862 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9488999843597412 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | AI in cancer detection |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C2779010991 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7617735862731934 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2720909 |
| concepts[0].display_name | Artifact (error) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7490627765655518 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2780980858 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6794485449790955 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q110022 |
| concepts[2].display_name | Dual (grammatical number) |
| concepts[3].id | https://openalex.org/C118505674 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6263116598129272 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q42586063 |
| concepts[3].display_name | Encoder |
| concepts[4].id | https://openalex.org/C31972630 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5222638249397278 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[4].display_name | Computer vision |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.49701741337776184 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C142362112 |
| concepts[6].level | 0 |
| concepts[6].score | 0.06066057085990906 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q735 |
| concepts[6].display_name | Art |
| concepts[7].id | https://openalex.org/C111919701 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[7].display_name | Operating system |
| concepts[8].id | https://openalex.org/C124952713 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8242 |
| concepts[8].display_name | Literature |
| keywords[0].id | https://openalex.org/keywords/artifact |
| keywords[0].score | 0.7617735862731934 |
| keywords[0].display_name | Artifact (error) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7490627765655518 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/dual |
| keywords[2].score | 0.6794485449790955 |
| keywords[2].display_name | Dual (grammatical number) |
| keywords[3].id | https://openalex.org/keywords/encoder |
| keywords[3].score | 0.6263116598129272 |
| keywords[3].display_name | Encoder |
| keywords[4].id | https://openalex.org/keywords/computer-vision |
| keywords[4].score | 0.5222638249397278 |
| keywords[4].display_name | Computer vision |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.49701741337776184 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/art |
| keywords[6].score | 0.06066057085990906 |
| keywords[6].display_name | Art |
| language | en |
| locations[0].id | doi:10.1109/access.2025.3585353 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2025.3585353 |
| locations[1].id | pmh:oai:doaj.org/article:ceae0295977d4df3814f2efcbd377eb6 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 13, Pp 118185-118211 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/ceae0295977d4df3814f2efcbd377eb6 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5045615699 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9176-3537 |
| authorships[0].author.display_name | F. M. Javed Mehedi Shamrat |
| authorships[0].countries | MY |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I33849332 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer System and Technology, Universiti Malaya, Kuala Lumpur, Malaysia |
| authorships[0].institutions[0].id | https://openalex.org/I33849332 |
| authorships[0].institutions[0].ror | https://ror.org/00rzspn62 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I33849332 |
| authorships[0].institutions[0].country_code | MY |
| authorships[0].institutions[0].display_name | University of Malaya |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | F M Javed Mehedi Shamrat |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer System and Technology, Universiti Malaya, Kuala Lumpur, Malaysia |
| authorships[1].author.id | https://openalex.org/A5055167487 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4894-0838 |
| authorships[1].author.display_name | Mohd Yamani Idna Idris |
| authorships[1].countries | MY |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I33849332 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer System and Technology, Universiti Malaya, Kuala Lumpur, Malaysia |
| authorships[1].institutions[0].id | https://openalex.org/I33849332 |
| authorships[1].institutions[0].ror | https://ror.org/00rzspn62 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I33849332 |
| authorships[1].institutions[0].country_code | MY |
| authorships[1].institutions[0].display_name | University of Malaya |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mohd Yamani Idna Idris |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer System and Technology, Universiti Malaya, Kuala Lumpur, Malaysia |
| authorships[2].author.id | https://openalex.org/A5118791905 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Chowdhury Forhadul Karim |
| authorships[2].countries | MY |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I33849332 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Physiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia |
| authorships[2].institutions[0].id | https://openalex.org/I33849332 |
| authorships[2].institutions[0].ror | https://ror.org/00rzspn62 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I33849332 |
| authorships[2].institutions[0].country_code | MY |
| authorships[2].institutions[0].display_name | University of Malaya |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chowdhury Forhadul Karim |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Physiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia |
| authorships[3].author.id | https://openalex.org/A5056799282 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1736-739X |
| authorships[3].author.display_name | Xujuan Zhou |
| authorships[3].countries | AU |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I185523456 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Business, University of Southern Queensland, Springfield, Australia |
| authorships[3].institutions[0].id | https://openalex.org/I185523456 |
| authorships[3].institutions[0].ror | https://ror.org/04sjbnx57 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I185523456 |
| authorships[3].institutions[0].country_code | AU |
| authorships[3].institutions[0].display_name | University of Southern Queensland |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xujuan Zhou |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Business, University of Southern Queensland, Springfield, Australia |
| authorships[4].author.id | https://openalex.org/A5073458655 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Raj Gururajan |
| authorships[4].countries | AU |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I185523456 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Business, University of Southern Queensland, Springfield, Australia |
| authorships[4].institutions[0].id | https://openalex.org/I185523456 |
| authorships[4].institutions[0].ror | https://ror.org/04sjbnx57 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I185523456 |
| authorships[4].institutions[0].country_code | AU |
| authorships[4].institutions[0].display_name | University of Southern Queensland |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Raj Gururajan |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Business, University of Southern Queensland, Springfield, Australia |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/access.2025.3585353 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | DPA-HairNet: A Dual Encoder Attention Based Network for Hair Artifact Removal in Dermoscopic Images |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10392 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9872000217437744 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2730 |
| primary_topic.subfield.display_name | Oncology |
| primary_topic.display_name | Cutaneous Melanoma Detection and Management |
| related_works | https://openalex.org/W2772917594, https://openalex.org/W2036807459, https://openalex.org/W2058170566, https://openalex.org/W2755342338, https://openalex.org/W2166024367, https://openalex.org/W3116076068, https://openalex.org/W2229312674, https://openalex.org/W2951359407, https://openalex.org/W2079911747, https://openalex.org/W1969923398 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2025.3585353 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2025.3585353 |
| primary_location.id | doi:10.1109/access.2025.3585353 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2025.3585353 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4313647451, https://openalex.org/W4306174766, https://openalex.org/W3023925071, https://openalex.org/W4310384367, https://openalex.org/W3120891898, https://openalex.org/W4401025790, https://openalex.org/W4292263242, https://openalex.org/W2113790176, https://openalex.org/W2971206245, https://openalex.org/W2952160515, https://openalex.org/W2753863096, https://openalex.org/W2048297895, https://openalex.org/W4309737900, https://openalex.org/W4211264657, https://openalex.org/W2808402517, https://openalex.org/W4220964541, https://openalex.org/W4401669258, https://openalex.org/W4404519587, https://openalex.org/W4403854970, https://openalex.org/W1991607872, https://openalex.org/W4361270341, https://openalex.org/W2253429366, https://openalex.org/W3115901151, https://openalex.org/W4320481841, https://openalex.org/W4205499468, https://openalex.org/W3101344540, https://openalex.org/W3177209867, https://openalex.org/W4311304837, https://openalex.org/W4282547501, https://openalex.org/W4281679852, https://openalex.org/W4394848549, https://openalex.org/W4380990940, https://openalex.org/W2108900923, https://openalex.org/W1997031710, https://openalex.org/W2087662809, https://openalex.org/W2023204574, https://openalex.org/W2170969730, https://openalex.org/W2150773511, https://openalex.org/W2143834565, https://openalex.org/W1504013152, https://openalex.org/W4309247091, https://openalex.org/W4388855325, https://openalex.org/W4386377754, https://openalex.org/W4407036333, https://openalex.org/W3136139906, https://openalex.org/W4319878714, https://openalex.org/W2748099481, https://openalex.org/W2975984174, https://openalex.org/W1987207115, https://openalex.org/W2617087439, https://openalex.org/W3007268491, https://openalex.org/W2133665775, https://openalex.org/W6738991188, https://openalex.org/W6740330286, https://openalex.org/W2008096797, https://openalex.org/W3158892156, https://openalex.org/W2794825826, https://openalex.org/W2884436604, https://openalex.org/W2963881378, https://openalex.org/W2787091153, https://openalex.org/W6750469568, https://openalex.org/W2928133111, https://openalex.org/W4394670654, https://openalex.org/W2097117768, https://openalex.org/W2183341477, https://openalex.org/W2963446712, https://openalex.org/W2963163009, https://openalex.org/W2194775991, https://openalex.org/W3157302753, https://openalex.org/W2976925903, https://openalex.org/W2531409750, https://openalex.org/W2964350391, https://openalex.org/W2963125010, https://openalex.org/W6750227808, https://openalex.org/W2999309192, https://openalex.org/W2133012565, https://openalex.org/W2616247523, https://openalex.org/W6748816842, https://openalex.org/W4295934721, https://openalex.org/W4411690293, https://openalex.org/W6858317486, https://openalex.org/W4387430183, https://openalex.org/W3118451526, https://openalex.org/W3202774381 |
| referenced_works_count | 84 |
| abstract_inverted_index.a | 28, 48, 68 |
| abstract_inverted_index.AI | 157 |
| abstract_inverted_index.To | 21 |
| abstract_inverted_index.an | 59 |
| abstract_inverted_index.by | 16 |
| abstract_inverted_index.in | 2, 153 |
| abstract_inverted_index.of | 10 |
| abstract_inverted_index.to | 52, 62, 95, 166, 184, 196 |
| abstract_inverted_index.we | 25 |
| abstract_inverted_index.The | 45 |
| abstract_inverted_index.all | 133 |
| abstract_inverted_index.and | 12, 56, 67, 77, 87, 99, 126, 141, 161, 168, 178, 189, 200 |
| abstract_inverted_index.for | 36, 202 |
| abstract_inverted_index.six | 108 |
| abstract_inverted_index.the | 7, 84, 129, 170 |
| abstract_inverted_index.was | 105, 138 |
| abstract_inverted_index.2018 | 86 |
| abstract_inverted_index.Dice | 117 |
| abstract_inverted_index.Dual | 30 |
| abstract_inverted_index.Hair | 0 |
| abstract_inverted_index.ISIC | 85 |
| abstract_inverted_index.MAE, | 122 |
| abstract_inverted_index.This | 81 |
| abstract_inverted_index.UMAP | 160 |
| abstract_inverted_index.data | 92 |
| abstract_inverted_index.dual | 49 |
| abstract_inverted_index.hair | 38, 74, 143 |
| abstract_inverted_index.into | 181 |
| abstract_inverted_index.skin | 14 |
| abstract_inverted_index.that | 71 |
| abstract_inverted_index.this | 23 |
| abstract_inverted_index.were | 164 |
| abstract_inverted_index.will | 193 |
| abstract_inverted_index.work | 192 |
| abstract_inverted_index.PSNR, | 121 |
| abstract_inverted_index.These | 173 |
| abstract_inverted_index.after | 142 |
| abstract_inverted_index.image | 187 |
| abstract_inverted_index.masks | 76 |
| abstract_inverted_index.model | 46, 102, 131 |
| abstract_inverted_index.novel | 29 |
| abstract_inverted_index.other | 13 |
| abstract_inverted_index.study | 82 |
| abstract_inverted_index.types | 199 |
| abstract_inverted_index.using | 112, 146 |
| abstract_inverted_index.where | 128 |
| abstract_inverted_index.while | 41 |
| abstract_inverted_index.Future | 191 |
| abstract_inverted_index.Index, | 120 |
| abstract_inverted_index.before | 140 |
| abstract_inverted_index.design | 70 |
| abstract_inverted_index.ensure | 100 |
| abstract_inverted_index.focus. | 172 |
| abstract_inverted_index.hinder | 6 |
| abstract_inverted_index.images | 4 |
| abstract_inverted_index.lesion | 19, 43 |
| abstract_inverted_index.models | 111 |
| abstract_inverted_index.robust | 101 |
| abstract_inverted_index.twelve | 147 |
| abstract_inverted_index.Encoder | 31 |
| abstract_inverted_index.Jaccard | 119 |
| abstract_inverted_index.Network | 33 |
| abstract_inverted_index.Recall, | 125 |
| abstract_inverted_index.address | 22 |
| abstract_inverted_index.against | 107 |
| abstract_inverted_index.dataset | 97 |
| abstract_inverted_index.encoder | 50 |
| abstract_inverted_index.enhance | 96, 185 |
| abstract_inverted_index.explore | 194 |
| abstract_inverted_index.images. | 80 |
| abstract_inverted_index.models. | 134 |
| abstract_inverted_index.precise | 73 |
| abstract_inverted_index.process | 54 |
| abstract_inverted_index.removal | 40, 145 |
| abstract_inverted_index.results | 174 |
| abstract_inverted_index.HAM10000 | 88 |
| abstract_inverted_index.accurate | 8 |
| abstract_inverted_index.advanced | 91 |
| abstract_inverted_index.analysis | 188 |
| abstract_inverted_index.artifact | 39, 144, 198 |
| abstract_inverted_index.assessed | 139 |
| abstract_inverted_index.clinical | 182, 204 |
| abstract_inverted_index.critical | 18 |
| abstract_inverted_index.designed | 34 |
| abstract_inverted_index.details. | 20 |
| abstract_inverted_index.employed | 165 |
| abstract_inverted_index.features | 47 |
| abstract_inverted_index.melanoma | 11 |
| abstract_inverted_index.metrics, | 114 |
| abstract_inverted_index.proposed | 130 |
| abstract_inverted_index.regions, | 66 |
| abstract_inverted_index.relevant | 65 |
| abstract_inverted_index.validate | 169 |
| abstract_inverted_index.Accuracy, | 116 |
| abstract_inverted_index.F1-Score, | 127 |
| abstract_inverted_index.Grad-CAM, | 159 |
| abstract_inverted_index.accuracy. | 155 |
| abstract_inverted_index.artifacts | 1 |
| abstract_inverted_index.attention | 60, 162 |
| abstract_inverted_index.datasets, | 89 |
| abstract_inverted_index.diagnosis | 9 |
| abstract_inverted_index.diversity | 98 |
| abstract_inverted_index.effective | 37 |
| abstract_inverted_index.evaluated | 106 |
| abstract_inverted_index.features, | 58 |
| abstract_inverted_index.generates | 72 |
| abstract_inverted_index.heatmaps, | 163 |
| abstract_inverted_index.including | 115 |
| abstract_inverted_index.interpret | 167 |
| abstract_inverted_index.introduce | 26 |
| abstract_inverted_index.leverages | 83 |
| abstract_inverted_index.mechanism | 61 |
| abstract_inverted_index.obscuring | 17 |
| abstract_inverted_index.potential | 179 |
| abstract_inverted_index.real-time | 203 |
| abstract_inverted_index.training. | 103 |
| abstract_inverted_index.workflows | 183 |
| abstract_inverted_index.Precision, | 124 |
| abstract_inverted_index.additional | 197 |
| abstract_inverted_index.challenge, | 24 |
| abstract_inverted_index.conditions | 15 |
| abstract_inverted_index.diagnosis. | 190 |
| abstract_inverted_index.diagnostic | 154 |
| abstract_inverted_index.integrity. | 44 |
| abstract_inverted_index.preserving | 42 |
| abstract_inverted_index.prioritize | 63 |
| abstract_inverted_index.separately | 53 |
| abstract_inverted_index.techniques | 94 |
| abstract_inverted_index.underscore | 175 |
| abstract_inverted_index.DPA-HairNet | 104 |
| abstract_inverted_index.Explainable | 156 |
| abstract_inverted_index.deployment. | 205 |
| abstract_inverted_index.dermoscopic | 3, 186 |
| abstract_inverted_index.dual-output | 69 |
| abstract_inverted_index.integration | 180 |
| abstract_inverted_index.performance | 137 |
| abstract_inverted_index.pre-trained | 148 |
| abstract_inverted_index.significant | 151 |
| abstract_inverted_index.techniques, | 158 |
| abstract_inverted_index.Coefficient, | 118 |
| abstract_inverted_index.DPA-HairNet, | 27 |
| abstract_inverted_index.Furthermore, | 135 |
| abstract_inverted_index.Specificity, | 123 |
| abstract_inverted_index.architecture | 51 |
| abstract_inverted_index.augmentation | 93 |
| abstract_inverted_index.classifiers, | 149 |
| abstract_inverted_index.high-quality | 78 |
| abstract_inverted_index.improvements | 152 |
| abstract_inverted_index.optimization | 201 |
| abstract_inverted_index.outperformed | 132 |
| abstract_inverted_index.segmentation | 75, 110 |
| abstract_inverted_index.specifically | 35 |
| abstract_inverted_index.comprehensive | 113 |
| abstract_inverted_index.demonstrating | 150 |
| abstract_inverted_index.effectiveness | 177 |
| abstract_inverted_index.hair-specific | 55 |
| abstract_inverted_index.incorporating | 90 |
| abstract_inverted_index.reconstructed | 79 |
| abstract_inverted_index.significantly | 5 |
| abstract_inverted_index.classification | 136 |
| abstract_inverted_index.diagnostically | 64 |
| abstract_inverted_index.generalization | 195 |
| abstract_inverted_index.model’s | 171 |
| abstract_inverted_index.Attention-Based | 32 |
| abstract_inverted_index.lesion-specific | 57 |
| abstract_inverted_index.state-of-the-art | 109 |
| abstract_inverted_index.DPA-HairNet’s | 176 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/5 |
| sustainable_development_goals[0].score | 0.5199999809265137 |
| sustainable_development_goals[0].display_name | Gender equality |
| citation_normalized_percentile.value | 0.3703081 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |