DPGNN: Dual-Perception Graph Neural Network for Representation Learning Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2110.07869
Graph neural networks (GNNs) have drawn increasing attention in recent years and achieved remarkable performance in many graph-based tasks, especially in semi-supervised learning on graphs. However, most existing GNNs are based on the message-passing paradigm to iteratively aggregate neighborhood information in a single topology space. Despite their success, the expressive power of GNNs is limited by some drawbacks, such as inflexibility of message source expansion, negligence of node-level message output discrepancy, and restriction of single message space. To address these drawbacks, we present a novel message-passing paradigm, based on the properties of multi-step message source, node-specific message output, and multi-space message interaction. To verify its validity, we instantiate the new message-passing paradigm as a Dual-Perception Graph Neural Network (DPGNN), which applies a node-to-step attention mechanism to aggregate node-specific multi-step neighborhood information adaptively. Our proposed DPGNN can capture the structural neighborhood information and the feature-related information simultaneously for graph representation learning. Experimental results on six benchmark datasets with different topological structures demonstrate that our method outperforms the latest state-of-the-art models, which proves the superiority and versatility of our method. To our knowledge, we are the first to consider node-specific message passing in the GNNs.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2110.07869
- https://arxiv.org/pdf/2110.07869
- OA Status
- green
- Cited By
- 1
- References
- 35
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3205006230
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3205006230Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2110.07869Digital Object Identifier
- Title
-
DPGNN: Dual-Perception Graph Neural Network for Representation LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-10-15Full publication date if available
- Authors
-
Li Zhou, Wenyu Chen, Dingyi Zeng, Shaohuan Cheng, Wanlong Liu, Malu Zhang, Hong QuList of authors in order
- Landing page
-
https://arxiv.org/abs/2110.07869Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2110.07869Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2110.07869Direct OA link when available
- Concepts
-
Message passing, Computer science, Graph, Theoretical computer science, Attention network, Node (physics), Artificial intelligence, Distributed computing, Structural engineering, EngineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 1Per-year citation counts (last 5 years)
- References (count)
-
35Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3205006230 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2110.07869 |
| ids.doi | https://doi.org/10.48550/arxiv.2110.07869 |
| ids.mag | 3205006230 |
| ids.openalex | https://openalex.org/W3205006230 |
| fwci | 0.14110358 |
| type | preprint |
| title | DPGNN: Dual-Perception Graph Neural Network for Representation Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11273 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Advanced Graph Neural Networks |
| topics[1].id | https://openalex.org/T10064 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9757999777793884 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3109 |
| topics[1].subfield.display_name | Statistical and Nonlinear Physics |
| topics[1].display_name | Complex Network Analysis Techniques |
| topics[2].id | https://openalex.org/T10241 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9620000123977661 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | Functional Brain Connectivity Studies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C854659 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8124670386314392 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1859284 |
| concepts[0].display_name | Message passing |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7991277575492859 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C132525143 |
| concepts[2].level | 2 |
| concepts[2].score | 0.568450927734375 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[2].display_name | Graph |
| concepts[3].id | https://openalex.org/C80444323 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5246617794036865 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[3].display_name | Theoretical computer science |
| concepts[4].id | https://openalex.org/C2993807640 |
| concepts[4].level | 2 |
| concepts[4].score | 0.44732025265693665 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q103709453 |
| concepts[4].display_name | Attention network |
| concepts[5].id | https://openalex.org/C62611344 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4198976755142212 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1062658 |
| concepts[5].display_name | Node (physics) |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.33108702301979065 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C120314980 |
| concepts[7].level | 1 |
| concepts[7].score | 0.19737300276756287 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[7].display_name | Distributed computing |
| concepts[8].id | https://openalex.org/C66938386 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q633538 |
| concepts[8].display_name | Structural engineering |
| concepts[9].id | https://openalex.org/C127413603 |
| concepts[9].level | 0 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[9].display_name | Engineering |
| keywords[0].id | https://openalex.org/keywords/message-passing |
| keywords[0].score | 0.8124670386314392 |
| keywords[0].display_name | Message passing |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7991277575492859 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/graph |
| keywords[2].score | 0.568450927734375 |
| keywords[2].display_name | Graph |
| keywords[3].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[3].score | 0.5246617794036865 |
| keywords[3].display_name | Theoretical computer science |
| keywords[4].id | https://openalex.org/keywords/attention-network |
| keywords[4].score | 0.44732025265693665 |
| keywords[4].display_name | Attention network |
| keywords[5].id | https://openalex.org/keywords/node |
| keywords[5].score | 0.4198976755142212 |
| keywords[5].display_name | Node (physics) |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.33108702301979065 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/distributed-computing |
| keywords[7].score | 0.19737300276756287 |
| keywords[7].display_name | Distributed computing |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2110.07869 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2110.07869 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2110.07869 |
| locations[1].id | doi:10.48550/arxiv.2110.07869 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2110.07869 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101911601 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5510-6406 |
| authorships[0].author.display_name | Li Zhou |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhou, Li |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100687323 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9933-8014 |
| authorships[1].author.display_name | Wenyu Chen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chen, Wenyu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5021284480 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1572-7400 |
| authorships[2].author.display_name | Dingyi Zeng |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zeng, Dingyi |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5055973356 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8197-6632 |
| authorships[3].author.display_name | Shaohuan Cheng |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Cheng, Shaohuan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5088958298 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8958-2478 |
| authorships[4].author.display_name | Wanlong Liu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Liu, Wanlong |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5031886937 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2345-0974 |
| authorships[5].author.display_name | Malu Zhang |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Zhang, Malu |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5021975286 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-6114-3441 |
| authorships[6].author.display_name | Hong Qu |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Qu, Hong |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2110.07869 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2021-10-25T00:00:00 |
| display_name | DPGNN: Dual-Perception Graph Neural Network for Representation Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11273 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Advanced Graph Neural Networks |
| related_works | https://openalex.org/W2978729728, https://openalex.org/W4288966080, https://openalex.org/W2510374584, https://openalex.org/W2134852660, https://openalex.org/W1530347314, https://openalex.org/W4392094631, https://openalex.org/W4389995241, https://openalex.org/W4389325792, https://openalex.org/W4320149722, https://openalex.org/W3213655484 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2110.07869 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2110.07869 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2110.07869 |
| primary_location.id | pmh:oai:arXiv.org:2110.07869 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2110.07869 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2110.07869 |
| publication_date | 2021-10-15 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W3091261294, https://openalex.org/W2948729509, https://openalex.org/W2998496395, https://openalex.org/W2167482691, https://openalex.org/W2522187036, https://openalex.org/W3175971420, https://openalex.org/W2135598826, https://openalex.org/W1522301498, https://openalex.org/W2187089797, https://openalex.org/W2949945331, https://openalex.org/W3092206109, https://openalex.org/W2964051675, https://openalex.org/W2766453196, https://openalex.org/W2606780347, https://openalex.org/W3094275584, https://openalex.org/W2519887557, https://openalex.org/W2894175828, https://openalex.org/W2911286998, https://openalex.org/W2604314403, https://openalex.org/W3034492151, https://openalex.org/W2962965968, https://openalex.org/W3090894886, https://openalex.org/W3094316287, https://openalex.org/W2943865428, https://openalex.org/W2554952599, https://openalex.org/W3026322980, https://openalex.org/W2970066309, https://openalex.org/W2995914187, https://openalex.org/W3005644236, https://openalex.org/W2393319904, https://openalex.org/W2994821362, https://openalex.org/W3042770487, https://openalex.org/W3100993589, https://openalex.org/W2951970475, https://openalex.org/W2963893572 |
| referenced_works_count | 35 |
| abstract_inverted_index.a | 41, 83, 113, 121 |
| abstract_inverted_index.To | 77, 102, 178 |
| abstract_inverted_index.as | 59, 112 |
| abstract_inverted_index.by | 55 |
| abstract_inverted_index.in | 8, 15, 20, 40, 190 |
| abstract_inverted_index.is | 53 |
| abstract_inverted_index.of | 51, 61, 66, 73, 91, 175 |
| abstract_inverted_index.on | 23, 31, 88, 152 |
| abstract_inverted_index.to | 35, 125, 185 |
| abstract_inverted_index.we | 81, 106, 181 |
| abstract_inverted_index.Our | 132 |
| abstract_inverted_index.and | 11, 71, 98, 141, 173 |
| abstract_inverted_index.are | 29, 182 |
| abstract_inverted_index.can | 135 |
| abstract_inverted_index.for | 146 |
| abstract_inverted_index.its | 104 |
| abstract_inverted_index.new | 109 |
| abstract_inverted_index.our | 162, 176, 179 |
| abstract_inverted_index.six | 153 |
| abstract_inverted_index.the | 32, 48, 89, 108, 137, 142, 165, 171, 183, 191 |
| abstract_inverted_index.GNNs | 28, 52 |
| abstract_inverted_index.have | 4 |
| abstract_inverted_index.many | 16 |
| abstract_inverted_index.most | 26 |
| abstract_inverted_index.some | 56 |
| abstract_inverted_index.such | 58 |
| abstract_inverted_index.that | 161 |
| abstract_inverted_index.with | 156 |
| abstract_inverted_index.DPGNN | 134 |
| abstract_inverted_index.GNNs. | 192 |
| abstract_inverted_index.Graph | 0, 115 |
| abstract_inverted_index.based | 30, 87 |
| abstract_inverted_index.drawn | 5 |
| abstract_inverted_index.first | 184 |
| abstract_inverted_index.graph | 147 |
| abstract_inverted_index.novel | 84 |
| abstract_inverted_index.power | 50 |
| abstract_inverted_index.their | 46 |
| abstract_inverted_index.these | 79 |
| abstract_inverted_index.which | 119, 169 |
| abstract_inverted_index.years | 10 |
| abstract_inverted_index.(GNNs) | 3 |
| abstract_inverted_index.Neural | 116 |
| abstract_inverted_index.latest | 166 |
| abstract_inverted_index.method | 163 |
| abstract_inverted_index.neural | 1 |
| abstract_inverted_index.output | 69 |
| abstract_inverted_index.proves | 170 |
| abstract_inverted_index.recent | 9 |
| abstract_inverted_index.single | 42, 74 |
| abstract_inverted_index.source | 63 |
| abstract_inverted_index.space. | 44, 76 |
| abstract_inverted_index.tasks, | 18 |
| abstract_inverted_index.verify | 103 |
| abstract_inverted_index.Despite | 45 |
| abstract_inverted_index.Network | 117 |
| abstract_inverted_index.address | 78 |
| abstract_inverted_index.applies | 120 |
| abstract_inverted_index.capture | 136 |
| abstract_inverted_index.graphs. | 24 |
| abstract_inverted_index.limited | 54 |
| abstract_inverted_index.message | 62, 68, 75, 93, 96, 100, 188 |
| abstract_inverted_index.method. | 177 |
| abstract_inverted_index.models, | 168 |
| abstract_inverted_index.output, | 97 |
| abstract_inverted_index.passing | 189 |
| abstract_inverted_index.present | 82 |
| abstract_inverted_index.results | 151 |
| abstract_inverted_index.source, | 94 |
| abstract_inverted_index.(DPGNN), | 118 |
| abstract_inverted_index.However, | 25 |
| abstract_inverted_index.achieved | 12 |
| abstract_inverted_index.consider | 186 |
| abstract_inverted_index.datasets | 155 |
| abstract_inverted_index.existing | 27 |
| abstract_inverted_index.learning | 22 |
| abstract_inverted_index.networks | 2 |
| abstract_inverted_index.paradigm | 34, 111 |
| abstract_inverted_index.proposed | 133 |
| abstract_inverted_index.success, | 47 |
| abstract_inverted_index.topology | 43 |
| abstract_inverted_index.aggregate | 37, 126 |
| abstract_inverted_index.attention | 7, 123 |
| abstract_inverted_index.benchmark | 154 |
| abstract_inverted_index.different | 157 |
| abstract_inverted_index.learning. | 149 |
| abstract_inverted_index.mechanism | 124 |
| abstract_inverted_index.paradigm, | 86 |
| abstract_inverted_index.validity, | 105 |
| abstract_inverted_index.drawbacks, | 57, 80 |
| abstract_inverted_index.especially | 19 |
| abstract_inverted_index.expansion, | 64 |
| abstract_inverted_index.expressive | 49 |
| abstract_inverted_index.increasing | 6 |
| abstract_inverted_index.knowledge, | 180 |
| abstract_inverted_index.multi-step | 92, 128 |
| abstract_inverted_index.negligence | 65 |
| abstract_inverted_index.node-level | 67 |
| abstract_inverted_index.properties | 90 |
| abstract_inverted_index.remarkable | 13 |
| abstract_inverted_index.structural | 138 |
| abstract_inverted_index.structures | 159 |
| abstract_inverted_index.adaptively. | 131 |
| abstract_inverted_index.demonstrate | 160 |
| abstract_inverted_index.graph-based | 17 |
| abstract_inverted_index.information | 39, 130, 140, 144 |
| abstract_inverted_index.instantiate | 107 |
| abstract_inverted_index.iteratively | 36 |
| abstract_inverted_index.multi-space | 99 |
| abstract_inverted_index.outperforms | 164 |
| abstract_inverted_index.performance | 14 |
| abstract_inverted_index.restriction | 72 |
| abstract_inverted_index.superiority | 172 |
| abstract_inverted_index.topological | 158 |
| abstract_inverted_index.versatility | 174 |
| abstract_inverted_index.Experimental | 150 |
| abstract_inverted_index.discrepancy, | 70 |
| abstract_inverted_index.interaction. | 101 |
| abstract_inverted_index.neighborhood | 38, 129, 139 |
| abstract_inverted_index.node-to-step | 122 |
| abstract_inverted_index.inflexibility | 60 |
| abstract_inverted_index.node-specific | 95, 127, 187 |
| abstract_inverted_index.representation | 148 |
| abstract_inverted_index.simultaneously | 145 |
| abstract_inverted_index.Dual-Perception | 114 |
| abstract_inverted_index.feature-related | 143 |
| abstract_inverted_index.message-passing | 33, 85, 110 |
| abstract_inverted_index.semi-supervised | 21 |
| abstract_inverted_index.state-of-the-art | 167 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.7599999904632568 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.56289656 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |