DQI: Measuring Data Quality in NLP Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2005.00816
Neural language models have achieved human level performance across several NLP datasets. However, recent studies have shown that these models are not truly learning the desired task; rather, their high performance is attributed to overfitting using spurious biases, which suggests that the capabilities of AI systems have been over-estimated. We introduce a generic formula for Data Quality Index (DQI) to help dataset creators create datasets free of such unwanted biases. We evaluate this formula using a recently proposed approach for adversarial filtering, AFLite. We propose a new data creation paradigm using DQI to create higher quality data. The data creation paradigm consists of several data visualizations to help data creators (i) understand the quality of data and (ii) visualize the impact of the created data instance on the overall quality. It also has a couple of automation methods to (i) assist data creators and (ii) make the model more robust to adversarial attacks. We use DQI along with these automation methods to renovate biased examples in SNLI. We show that models trained on the renovated SNLI dataset generalize better to out of distribution tasks. Renovation results in reduced model performance, exposing a large gap with respect to human performance. DQI systematically helps in creating harder benchmarks using active learning. Our work takes the process of dynamic dataset creation forward, wherein datasets evolve together with the evolving state of the art, therefore serving as a means of benchmarking the true progress of AI.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2005.00816
- https://arxiv.org/pdf/2005.00816
- OA Status
- green
- Cited By
- 7
- References
- 76
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3021112832
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3021112832Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2005.00816Digital Object Identifier
- Title
-
DQI: Measuring Data Quality in NLPWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-05-02Full publication date if available
- Authors
-
Swaroop Mishra, Anjana Arunkumar, Bhavdeep Sachdeva, Chris Bryan, Chitta BaralList of authors in order
- Landing page
-
https://arxiv.org/abs/2005.00816Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2005.00816Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2005.00816Direct OA link when available
- Concepts
-
Overfitting, Computer science, Benchmarking, Artificial intelligence, Machine learning, Deep learning, Quality (philosophy), Task (project management), Automation, Spurious relationship, Process (computing), Data quality, Data mining, Artificial neural network, Engineering, Business, Metric (unit), Mechanical engineering, Operating system, Philosophy, Epistemology, Systems engineering, Marketing, Operations managementTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 2, 2020: 5Per-year citation counts (last 5 years)
- References (count)
-
76Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3021112832 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2005.00816 |
| ids.doi | https://doi.org/10.48550/arxiv.2005.00816 |
| ids.mag | 3021112832 |
| ids.openalex | https://openalex.org/W3021112832 |
| fwci | |
| type | preprint |
| title | DQI: Measuring Data Quality in NLP |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9930999875068665 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T12026 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9878000020980835 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Explainable Artificial Intelligence (XAI) |
| topics[2].id | https://openalex.org/T11689 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9869999885559082 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Adversarial Robustness in Machine Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C22019652 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7810361981391907 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q331309 |
| concepts[0].display_name | Overfitting |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7596930265426636 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C86251818 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7119104862213135 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q816754 |
| concepts[2].display_name | Benchmarking |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6611009240150452 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6095854043960571 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C108583219 |
| concepts[5].level | 2 |
| concepts[5].score | 0.528417706489563 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[5].display_name | Deep learning |
| concepts[6].id | https://openalex.org/C2779530757 |
| concepts[6].level | 2 |
| concepts[6].score | 0.520202100276947 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1207505 |
| concepts[6].display_name | Quality (philosophy) |
| concepts[7].id | https://openalex.org/C2780451532 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5141139626502991 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[7].display_name | Task (project management) |
| concepts[8].id | https://openalex.org/C115901376 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5097333788871765 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q184199 |
| concepts[8].display_name | Automation |
| concepts[9].id | https://openalex.org/C97256817 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5070326328277588 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1462316 |
| concepts[9].display_name | Spurious relationship |
| concepts[10].id | https://openalex.org/C98045186 |
| concepts[10].level | 2 |
| concepts[10].score | 0.47783708572387695 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[10].display_name | Process (computing) |
| concepts[11].id | https://openalex.org/C24756922 |
| concepts[11].level | 3 |
| concepts[11].score | 0.43784722685813904 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1757694 |
| concepts[11].display_name | Data quality |
| concepts[12].id | https://openalex.org/C124101348 |
| concepts[12].level | 1 |
| concepts[12].score | 0.37355419993400574 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[12].display_name | Data mining |
| concepts[13].id | https://openalex.org/C50644808 |
| concepts[13].level | 2 |
| concepts[13].score | 0.25993865728378296 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[13].display_name | Artificial neural network |
| concepts[14].id | https://openalex.org/C127413603 |
| concepts[14].level | 0 |
| concepts[14].score | 0.1321285367012024 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[14].display_name | Engineering |
| concepts[15].id | https://openalex.org/C144133560 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[15].display_name | Business |
| concepts[16].id | https://openalex.org/C176217482 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q860554 |
| concepts[16].display_name | Metric (unit) |
| concepts[17].id | https://openalex.org/C78519656 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[17].display_name | Mechanical engineering |
| concepts[18].id | https://openalex.org/C111919701 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[18].display_name | Operating system |
| concepts[19].id | https://openalex.org/C138885662 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[19].display_name | Philosophy |
| concepts[20].id | https://openalex.org/C111472728 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[20].display_name | Epistemology |
| concepts[21].id | https://openalex.org/C201995342 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[21].display_name | Systems engineering |
| concepts[22].id | https://openalex.org/C162853370 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q39809 |
| concepts[22].display_name | Marketing |
| concepts[23].id | https://openalex.org/C21547014 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q1423657 |
| concepts[23].display_name | Operations management |
| keywords[0].id | https://openalex.org/keywords/overfitting |
| keywords[0].score | 0.7810361981391907 |
| keywords[0].display_name | Overfitting |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7596930265426636 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/benchmarking |
| keywords[2].score | 0.7119104862213135 |
| keywords[2].display_name | Benchmarking |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6611009240150452 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.6095854043960571 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/deep-learning |
| keywords[5].score | 0.528417706489563 |
| keywords[5].display_name | Deep learning |
| keywords[6].id | https://openalex.org/keywords/quality |
| keywords[6].score | 0.520202100276947 |
| keywords[6].display_name | Quality (philosophy) |
| keywords[7].id | https://openalex.org/keywords/task |
| keywords[7].score | 0.5141139626502991 |
| keywords[7].display_name | Task (project management) |
| keywords[8].id | https://openalex.org/keywords/automation |
| keywords[8].score | 0.5097333788871765 |
| keywords[8].display_name | Automation |
| keywords[9].id | https://openalex.org/keywords/spurious-relationship |
| keywords[9].score | 0.5070326328277588 |
| keywords[9].display_name | Spurious relationship |
| keywords[10].id | https://openalex.org/keywords/process |
| keywords[10].score | 0.47783708572387695 |
| keywords[10].display_name | Process (computing) |
| keywords[11].id | https://openalex.org/keywords/data-quality |
| keywords[11].score | 0.43784722685813904 |
| keywords[11].display_name | Data quality |
| keywords[12].id | https://openalex.org/keywords/data-mining |
| keywords[12].score | 0.37355419993400574 |
| keywords[12].display_name | Data mining |
| keywords[13].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[13].score | 0.25993865728378296 |
| keywords[13].display_name | Artificial neural network |
| keywords[14].id | https://openalex.org/keywords/engineering |
| keywords[14].score | 0.1321285367012024 |
| keywords[14].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2005.00816 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2005.00816 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2005.00816 |
| locations[1].id | mag:3021112832 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | arXiv (Cornell University) |
| locations[1].landing_page_url | http://arxiv.org/pdf/2005.00816.pdf |
| locations[2].id | doi:10.48550/arxiv.2005.00816 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.48550/arxiv.2005.00816 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5063722751 |
| authorships[0].author.orcid | https://orcid.org/0009-0001-6413-7001 |
| authorships[0].author.display_name | Swaroop Mishra |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Swaroop Mishra |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5087561934 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3513-8600 |
| authorships[1].author.display_name | Anjana Arunkumar |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Anjana Arunkumar |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5066672155 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Bhavdeep Sachdeva |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Bhavdeep Sachdeva |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5043391973 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2430-815X |
| authorships[3].author.display_name | Chris Bryan |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Chris Bryan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5083735830 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7549-723X |
| authorships[4].author.display_name | Chitta Baral |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I55732556 |
| authorships[4].affiliations[0].raw_affiliation_string | Arizona State University** |
| authorships[4].institutions[0].id | https://openalex.org/I55732556 |
| authorships[4].institutions[0].ror | https://ror.org/03efmqc40 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I55732556 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Arizona State University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Chitta Baral |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Arizona State University** |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2005.00816 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | DQI: Measuring Data Quality in NLP |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9930999875068665 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W2963341956, https://openalex.org/W2031342017, https://openalex.org/W1840435438, https://openalex.org/W3035032873, https://openalex.org/W3034408878, https://openalex.org/W2965373594, https://openalex.org/W2963748441, https://openalex.org/W2962736243, https://openalex.org/W2117539524, https://openalex.org/W3089006272, https://openalex.org/W3117316831, https://openalex.org/W3126015239, https://openalex.org/W3196809712, https://openalex.org/W3207893443, https://openalex.org/W3045527342, https://openalex.org/W2976395159, https://openalex.org/W3103425602, https://openalex.org/W3205009431, https://openalex.org/W3202640981, https://openalex.org/W1957494854 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2020 |
| counts_by_year[1].cited_by_count | 5 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:2005.00816 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2005.00816 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2005.00816 |
| primary_location.id | pmh:oai:arXiv.org:2005.00816 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2005.00816 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2005.00816 |
| publication_date | 2020-05-02 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2932893307, https://openalex.org/W2962843521, https://openalex.org/W3019416653, https://openalex.org/W2964165364, https://openalex.org/W2168199177, https://openalex.org/W3048427567, https://openalex.org/W2963159690, https://openalex.org/W2963969878, https://openalex.org/W2963394326, https://openalex.org/W2963748441, https://openalex.org/W3089102176, https://openalex.org/W2562979205, https://openalex.org/W2798665661, https://openalex.org/W3035032873, https://openalex.org/W3005700362, https://openalex.org/W3034430043, https://openalex.org/W2952281677, https://openalex.org/W2557764419, https://openalex.org/W1866463160, https://openalex.org/W1544827683, https://openalex.org/W2963846996, https://openalex.org/W2296076036, https://openalex.org/W2031342017, https://openalex.org/W2964150944, https://openalex.org/W2163225723, https://openalex.org/W2984256198, https://openalex.org/W2963383094, https://openalex.org/W2970442950, https://openalex.org/W2952984539, https://openalex.org/W2951243568, https://openalex.org/W2091034860, https://openalex.org/W2766108848, https://openalex.org/W1965605789, https://openalex.org/W2877825950, https://openalex.org/W2739810148, https://openalex.org/W2970019270, https://openalex.org/W2889453388, https://openalex.org/W2145005293, https://openalex.org/W2963120843, https://openalex.org/W3137695714, https://openalex.org/W1840435438, https://openalex.org/W2994934025, https://openalex.org/W2962727366, https://openalex.org/W2950645060, https://openalex.org/W2965595599, https://openalex.org/W3034850762, https://openalex.org/W2525332836, https://openalex.org/W2075351671, https://openalex.org/W3113580345, https://openalex.org/W2996068536, https://openalex.org/W2951286828, https://openalex.org/W2259377089, https://openalex.org/W2531327146, https://openalex.org/W2606974598, https://openalex.org/W3035139434, https://openalex.org/W2803125506, https://openalex.org/W2982358316, https://openalex.org/W2895243423, https://openalex.org/W2477223685, https://openalex.org/W3014564055, https://openalex.org/W2963372062, https://openalex.org/W3111372685, https://openalex.org/W2962736243, https://openalex.org/W2091950237, https://openalex.org/W2025341897, https://openalex.org/W2996851481, https://openalex.org/W2123932410, https://openalex.org/W2973151436, https://openalex.org/W2807507062, https://openalex.org/W2466175319, https://openalex.org/W2949574275, https://openalex.org/W2996908057, https://openalex.org/W2899689163, https://openalex.org/W2110750141, https://openalex.org/W3014518243, https://openalex.org/W2962899377 |
| referenced_works_count | 76 |
| abstract_inverted_index.a | 51, 75, 85, 133, 191, 233 |
| abstract_inverted_index.AI | 44 |
| abstract_inverted_index.It | 130 |
| abstract_inverted_index.We | 49, 70, 83, 153, 167 |
| abstract_inverted_index.as | 232 |
| abstract_inverted_index.in | 165, 186, 202 |
| abstract_inverted_index.is | 31 |
| abstract_inverted_index.of | 43, 66, 102, 114, 121, 135, 181, 214, 227, 235, 240 |
| abstract_inverted_index.on | 126, 172 |
| abstract_inverted_index.to | 33, 59, 92, 106, 138, 150, 161, 179, 196 |
| abstract_inverted_index.(i) | 110, 139 |
| abstract_inverted_index.AI. | 241 |
| abstract_inverted_index.DQI | 91, 155, 199 |
| abstract_inverted_index.NLP | 10 |
| abstract_inverted_index.Our | 209 |
| abstract_inverted_index.The | 97 |
| abstract_inverted_index.and | 116, 143 |
| abstract_inverted_index.are | 20 |
| abstract_inverted_index.for | 54, 79 |
| abstract_inverted_index.gap | 193 |
| abstract_inverted_index.has | 132 |
| abstract_inverted_index.new | 86 |
| abstract_inverted_index.not | 21 |
| abstract_inverted_index.out | 180 |
| abstract_inverted_index.the | 24, 41, 112, 119, 122, 127, 146, 173, 212, 224, 228, 237 |
| abstract_inverted_index.use | 154 |
| abstract_inverted_index.(ii) | 117, 144 |
| abstract_inverted_index.Data | 55 |
| abstract_inverted_index.SNLI | 175 |
| abstract_inverted_index.also | 131 |
| abstract_inverted_index.art, | 229 |
| abstract_inverted_index.been | 47 |
| abstract_inverted_index.data | 87, 98, 104, 108, 115, 124, 141 |
| abstract_inverted_index.free | 65 |
| abstract_inverted_index.have | 3, 15, 46 |
| abstract_inverted_index.help | 60, 107 |
| abstract_inverted_index.high | 29 |
| abstract_inverted_index.make | 145 |
| abstract_inverted_index.more | 148 |
| abstract_inverted_index.show | 168 |
| abstract_inverted_index.such | 67 |
| abstract_inverted_index.that | 17, 40, 169 |
| abstract_inverted_index.this | 72 |
| abstract_inverted_index.true | 238 |
| abstract_inverted_index.with | 157, 194, 223 |
| abstract_inverted_index.work | 210 |
| abstract_inverted_index.(DQI) | 58 |
| abstract_inverted_index.Index | 57 |
| abstract_inverted_index.SNLI. | 166 |
| abstract_inverted_index.along | 156 |
| abstract_inverted_index.data. | 96 |
| abstract_inverted_index.helps | 201 |
| abstract_inverted_index.human | 5, 197 |
| abstract_inverted_index.large | 192 |
| abstract_inverted_index.level | 6 |
| abstract_inverted_index.means | 234 |
| abstract_inverted_index.model | 147, 188 |
| abstract_inverted_index.shown | 16 |
| abstract_inverted_index.state | 226 |
| abstract_inverted_index.takes | 211 |
| abstract_inverted_index.task; | 26 |
| abstract_inverted_index.their | 28 |
| abstract_inverted_index.these | 18, 158 |
| abstract_inverted_index.truly | 22 |
| abstract_inverted_index.using | 35, 74, 90, 206 |
| abstract_inverted_index.which | 38 |
| abstract_inverted_index.Neural | 0 |
| abstract_inverted_index.across | 8 |
| abstract_inverted_index.active | 207 |
| abstract_inverted_index.assist | 140 |
| abstract_inverted_index.better | 178 |
| abstract_inverted_index.biased | 163 |
| abstract_inverted_index.couple | 134 |
| abstract_inverted_index.create | 63, 93 |
| abstract_inverted_index.evolve | 221 |
| abstract_inverted_index.harder | 204 |
| abstract_inverted_index.higher | 94 |
| abstract_inverted_index.impact | 120 |
| abstract_inverted_index.models | 2, 19, 170 |
| abstract_inverted_index.recent | 13 |
| abstract_inverted_index.robust | 149 |
| abstract_inverted_index.tasks. | 183 |
| abstract_inverted_index.AFLite. | 82 |
| abstract_inverted_index.Quality | 56 |
| abstract_inverted_index.biases, | 37 |
| abstract_inverted_index.biases. | 69 |
| abstract_inverted_index.created | 123 |
| abstract_inverted_index.dataset | 61, 176, 216 |
| abstract_inverted_index.desired | 25 |
| abstract_inverted_index.dynamic | 215 |
| abstract_inverted_index.formula | 53, 73 |
| abstract_inverted_index.generic | 52 |
| abstract_inverted_index.methods | 137, 160 |
| abstract_inverted_index.overall | 128 |
| abstract_inverted_index.process | 213 |
| abstract_inverted_index.propose | 84 |
| abstract_inverted_index.quality | 95, 113 |
| abstract_inverted_index.rather, | 27 |
| abstract_inverted_index.reduced | 187 |
| abstract_inverted_index.respect | 195 |
| abstract_inverted_index.results | 185 |
| abstract_inverted_index.serving | 231 |
| abstract_inverted_index.several | 9, 103 |
| abstract_inverted_index.studies | 14 |
| abstract_inverted_index.systems | 45 |
| abstract_inverted_index.trained | 171 |
| abstract_inverted_index.wherein | 219 |
| abstract_inverted_index.However, | 12 |
| abstract_inverted_index.achieved | 4 |
| abstract_inverted_index.approach | 78 |
| abstract_inverted_index.attacks. | 152 |
| abstract_inverted_index.consists | 101 |
| abstract_inverted_index.creating | 203 |
| abstract_inverted_index.creation | 88, 99, 217 |
| abstract_inverted_index.creators | 62, 109, 142 |
| abstract_inverted_index.datasets | 64, 220 |
| abstract_inverted_index.evaluate | 71 |
| abstract_inverted_index.evolving | 225 |
| abstract_inverted_index.examples | 164 |
| abstract_inverted_index.exposing | 190 |
| abstract_inverted_index.forward, | 218 |
| abstract_inverted_index.instance | 125 |
| abstract_inverted_index.language | 1 |
| abstract_inverted_index.learning | 23 |
| abstract_inverted_index.paradigm | 89, 100 |
| abstract_inverted_index.progress | 239 |
| abstract_inverted_index.proposed | 77 |
| abstract_inverted_index.quality. | 129 |
| abstract_inverted_index.recently | 76 |
| abstract_inverted_index.renovate | 162 |
| abstract_inverted_index.spurious | 36 |
| abstract_inverted_index.suggests | 39 |
| abstract_inverted_index.together | 222 |
| abstract_inverted_index.unwanted | 68 |
| abstract_inverted_index.datasets. | 11 |
| abstract_inverted_index.introduce | 50 |
| abstract_inverted_index.learning. | 208 |
| abstract_inverted_index.renovated | 174 |
| abstract_inverted_index.therefore | 230 |
| abstract_inverted_index.visualize | 118 |
| abstract_inverted_index.Renovation | 184 |
| abstract_inverted_index.attributed | 32 |
| abstract_inverted_index.automation | 136, 159 |
| abstract_inverted_index.benchmarks | 205 |
| abstract_inverted_index.filtering, | 81 |
| abstract_inverted_index.generalize | 177 |
| abstract_inverted_index.understand | 111 |
| abstract_inverted_index.adversarial | 80, 151 |
| abstract_inverted_index.overfitting | 34 |
| abstract_inverted_index.performance | 7, 30 |
| abstract_inverted_index.benchmarking | 236 |
| abstract_inverted_index.capabilities | 42 |
| abstract_inverted_index.distribution | 182 |
| abstract_inverted_index.performance, | 189 |
| abstract_inverted_index.performance. | 198 |
| abstract_inverted_index.systematically | 200 |
| abstract_inverted_index.visualizations | 105 |
| abstract_inverted_index.over-estimated. | 48 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.41999998688697815 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile |