DRL-based dependent task offloading with delay-energy tradeoff in medical image edge computing Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1007/s40747-023-01322-x
Task offloading solves the problem that the computing resources of terminal devices in hospitals are limited by offloading massive radiomics-based medical image diagnosis model (RIDM) tasks to edge servers (ESs). However, sequential offloading decision-making is NP-hard. Representing the dependencies of tasks and developing collaborative computing between ESs have become challenges. In addition, model-free deep reinforcement learning (DRL) has poor sample efficiency and brittleness to hyperparameters. To address these challenges, we propose a distributed collaborative dependent task offloading strategy based on DRL (DCDO-DRL). The objective is to maximize the utility of RIDM tasks, which is a weighted sum of the delay and energy consumption generated by execution. The dependencies of the RIDM task are modeled as a directed acyclic graph (DAG). The sequence prediction of the S2S neural network is adopted to represent the offloading decision process within the DAG. Next, a distributed collaborative processing algorithm is designed on the edge layer to further improve run efficiency. Finally, the DCDO-DRL strategy follows the discrete soft actor-critic method to improve the robustness of the S2S neural network. The numerical results prove the convergence and statistical superiority of the DCDO-DRL strategy. Compared with other algorithms, the DCDO-DRL strategy improves the execution utility of the RIDM task by at least 23.07, 12.77, and 8.51% in the three scenarios.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s40747-023-01322-x
- https://link.springer.com/content/pdf/10.1007/s40747-023-01322-x.pdf
- OA Status
- gold
- Cited By
- 12
- References
- 64
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391296275
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391296275Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s40747-023-01322-xDigital Object Identifier
- Title
-
DRL-based dependent task offloading with delay-energy tradeoff in medical image edge computingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-29Full publication date if available
- Authors
-
Qi Liu, Zhao Tian, Ning Wang, Yusong LinList of authors in order
- Landing page
-
https://doi.org/10.1007/s40747-023-01322-xPublisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s40747-023-01322-x.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s40747-023-01322-x.pdfDirect OA link when available
- Concepts
-
Computational intelligence, Task (project management), Computer science, Image (mathematics), Edge computing, Enhanced Data Rates for GSM Evolution, Energy (signal processing), Artificial intelligence, Mathematics, Engineering, Systems engineering, StatisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
12Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 9, 2024: 3Per-year citation counts (last 5 years)
- References (count)
-
64Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391296275 |
|---|---|
| doi | https://doi.org/10.1007/s40747-023-01322-x |
| ids.doi | https://doi.org/10.1007/s40747-023-01322-x |
| ids.openalex | https://openalex.org/W4391296275 |
| fwci | 2.92079651 |
| type | article |
| title | DRL-based dependent task offloading with delay-energy tradeoff in medical image edge computing |
| awards[0].id | https://openalex.org/G6203153198 |
| awards[0].funder_id | https://openalex.org/F4320326295 |
| awards[0].display_name | |
| awards[0].funder_award_id | 20XTZX06013 |
| awards[0].funder_display_name | Collaborative Innovation Center of Major Machine Manufacturing in Liaoning |
| awards[1].id | https://openalex.org/G6407766572 |
| awards[1].funder_id | https://openalex.org/F4320326295 |
| awards[1].display_name | |
| awards[1].funder_award_id | 20XTZX05015 |
| awards[1].funder_display_name | Collaborative Innovation Center of Major Machine Manufacturing in Liaoning |
| awards[2].id | https://openalex.org/G4640370477 |
| awards[2].funder_id | https://openalex.org/F4320316314 |
| awards[2].display_name | |
| awards[2].funder_award_id | 212102310039 |
| awards[2].funder_display_name | Key Technologies Research and Development Program of Anhui Province |
| awards[3].id | https://openalex.org/G5639087772 |
| awards[3].funder_id | https://openalex.org/F4320321001 |
| awards[3].display_name | |
| awards[3].funder_award_id | 81772009 |
| awards[3].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 3 |
| biblio.volume | 10 |
| biblio.last_page | 3304 |
| biblio.first_page | 3283 |
| topics[0].id | https://openalex.org/T11636 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9952999949455261 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2718 |
| topics[0].subfield.display_name | Health Informatics |
| topics[0].display_name | Artificial Intelligence in Healthcare and Education |
| topics[1].id | https://openalex.org/T12702 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9944999814033508 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2808 |
| topics[1].subfield.display_name | Neurology |
| topics[1].display_name | Brain Tumor Detection and Classification |
| topics[2].id | https://openalex.org/T12422 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9879000186920166 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Radiomics and Machine Learning in Medical Imaging |
| funders[0].id | https://openalex.org/F4320316314 |
| funders[0].ror | |
| funders[0].display_name | Key Technologies Research and Development Program of Anhui Province |
| funders[1].id | https://openalex.org/F4320321001 |
| funders[1].ror | https://ror.org/01h0zpd94 |
| funders[1].display_name | National Natural Science Foundation of China |
| funders[2].id | https://openalex.org/F4320326295 |
| funders[2].ror | |
| funders[2].display_name | Collaborative Innovation Center of Major Machine Manufacturing in Liaoning |
| is_xpac | False |
| apc_list.value | 1320 |
| apc_list.currency | GBP |
| apc_list.value_usd | 1619 |
| apc_paid.value | 1320 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 1619 |
| concepts[0].id | https://openalex.org/C139502532 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7430441975593567 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1122090 |
| concepts[0].display_name | Computational intelligence |
| concepts[1].id | https://openalex.org/C2780451532 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6832865476608276 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[1].display_name | Task (project management) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6137702465057373 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C115961682 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5941888689994812 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[3].display_name | Image (mathematics) |
| concepts[4].id | https://openalex.org/C2778456923 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5721147060394287 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5337692 |
| concepts[4].display_name | Edge computing |
| concepts[5].id | https://openalex.org/C162307627 |
| concepts[5].level | 2 |
| concepts[5].score | 0.49826669692993164 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q204833 |
| concepts[5].display_name | Enhanced Data Rates for GSM Evolution |
| concepts[6].id | https://openalex.org/C186370098 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4867000877857208 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q442787 |
| concepts[6].display_name | Energy (signal processing) |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.31145039200782776 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.16118040680885315 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C127413603 |
| concepts[9].level | 0 |
| concepts[9].score | 0.13203281164169312 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[9].display_name | Engineering |
| concepts[10].id | https://openalex.org/C201995342 |
| concepts[10].level | 1 |
| concepts[10].score | 0.07392457127571106 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[10].display_name | Systems engineering |
| concepts[11].id | https://openalex.org/C105795698 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[11].display_name | Statistics |
| keywords[0].id | https://openalex.org/keywords/computational-intelligence |
| keywords[0].score | 0.7430441975593567 |
| keywords[0].display_name | Computational intelligence |
| keywords[1].id | https://openalex.org/keywords/task |
| keywords[1].score | 0.6832865476608276 |
| keywords[1].display_name | Task (project management) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6137702465057373 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/image |
| keywords[3].score | 0.5941888689994812 |
| keywords[3].display_name | Image (mathematics) |
| keywords[4].id | https://openalex.org/keywords/edge-computing |
| keywords[4].score | 0.5721147060394287 |
| keywords[4].display_name | Edge computing |
| keywords[5].id | https://openalex.org/keywords/enhanced-data-rates-for-gsm-evolution |
| keywords[5].score | 0.49826669692993164 |
| keywords[5].display_name | Enhanced Data Rates for GSM Evolution |
| keywords[6].id | https://openalex.org/keywords/energy |
| keywords[6].score | 0.4867000877857208 |
| keywords[6].display_name | Energy (signal processing) |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.31145039200782776 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.16118040680885315 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/engineering |
| keywords[9].score | 0.13203281164169312 |
| keywords[9].display_name | Engineering |
| keywords[10].id | https://openalex.org/keywords/systems-engineering |
| keywords[10].score | 0.07392457127571106 |
| keywords[10].display_name | Systems engineering |
| language | en |
| locations[0].id | doi:10.1007/s40747-023-01322-x |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S3035462843 |
| locations[0].source.issn | 2198-6053, 2199-4536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2198-6053 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Complex & Intelligent Systems |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s40747-023-01322-x.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Complex & Intelligent Systems |
| locations[0].landing_page_url | https://doi.org/10.1007/s40747-023-01322-x |
| locations[1].id | pmh:oai:doaj.org/article:0f48b3a04f0d4110b7f0e1ed8def2d96 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Complex & Intelligent Systems, Vol 10, Iss 3, Pp 3283-3304 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/0f48b3a04f0d4110b7f0e1ed8def2d96 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100453144 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5378-6404 |
| authorships[0].author.display_name | Qi Liu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I38877650 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou, 450001, China |
| authorships[0].institutions[0].id | https://openalex.org/I38877650 |
| authorships[0].institutions[0].ror | https://ror.org/04ypx8c21 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I38877650 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Zhengzhou University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Qi Liu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou, 450001, China |
| authorships[1].author.id | https://openalex.org/A5107990595 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1741-4803 |
| authorships[1].author.display_name | Zhao Tian |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I38877650 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou, 450002, China |
| authorships[1].institutions[0].id | https://openalex.org/I38877650 |
| authorships[1].institutions[0].ror | https://ror.org/04ypx8c21 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I38877650 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Zhengzhou University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhao Tian |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou, 450002, China |
| authorships[2].author.id | https://openalex.org/A5058107332 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1745-1425 |
| authorships[2].author.display_name | Ning Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I38877650 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou, 450001, China |
| authorships[2].institutions[0].id | https://openalex.org/I38877650 |
| authorships[2].institutions[0].ror | https://ror.org/04ypx8c21 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I38877650 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Zhengzhou University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ning Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou, 450001, China |
| authorships[3].author.id | https://openalex.org/A5080806594 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2284-5763 |
| authorships[3].author.display_name | Yusong Lin |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I38877650 |
| authorships[3].affiliations[0].raw_affiliation_string | Collaborative Innovation Center for Internet Healthcare, Zhengzhou University, Zhengzhou, 450052, China |
| authorships[3].institutions[0].id | https://openalex.org/I38877650 |
| authorships[3].institutions[0].ror | https://ror.org/04ypx8c21 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I38877650 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Zhengzhou University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Yusong Lin |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Collaborative Innovation Center for Internet Healthcare, Zhengzhou University, Zhengzhou, 450052, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s40747-023-01322-x.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | DRL-based dependent task offloading with delay-energy tradeoff in medical image edge computing |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11636 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9952999949455261 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2718 |
| primary_topic.subfield.display_name | Health Informatics |
| primary_topic.display_name | Artificial Intelligence in Healthcare and Education |
| related_works | https://openalex.org/W2736674626, https://openalex.org/W2973875853, https://openalex.org/W1987895166, https://openalex.org/W2979760315, https://openalex.org/W4324372666, https://openalex.org/W4225706866, https://openalex.org/W4386004629, https://openalex.org/W2942586735, https://openalex.org/W2956163139, https://openalex.org/W3035059915 |
| cited_by_count | 12 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 9 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1007/s40747-023-01322-x |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S3035462843 |
| best_oa_location.source.issn | 2198-6053, 2199-4536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2198-6053 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Complex & Intelligent Systems |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s40747-023-01322-x.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Complex & Intelligent Systems |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s40747-023-01322-x |
| primary_location.id | doi:10.1007/s40747-023-01322-x |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S3035462843 |
| primary_location.source.issn | 2198-6053, 2199-4536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2198-6053 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Complex & Intelligent Systems |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s40747-023-01322-x.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Complex & Intelligent Systems |
| primary_location.landing_page_url | https://doi.org/10.1007/s40747-023-01322-x |
| publication_date | 2024-01-29 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3157560208, https://openalex.org/W4308718304, https://openalex.org/W3100114739, https://openalex.org/W4288064567, https://openalex.org/W3112782147, https://openalex.org/W4365459175, https://openalex.org/W4312056187, https://openalex.org/W3171631644, https://openalex.org/W3206626070, https://openalex.org/W4312588618, https://openalex.org/W2040466547, https://openalex.org/W3193591217, https://openalex.org/W4362589821, https://openalex.org/W3011667710, https://openalex.org/W2904246096, https://openalex.org/W4302773446, https://openalex.org/W4284959267, https://openalex.org/W2525221147, https://openalex.org/W2748971311, https://openalex.org/W2947858624, https://openalex.org/W2934302500, https://openalex.org/W2893874922, https://openalex.org/W2607494789, https://openalex.org/W3217119770, https://openalex.org/W3202127765, https://openalex.org/W3127099068, https://openalex.org/W4284889301, https://openalex.org/W4287887765, https://openalex.org/W4205812117, https://openalex.org/W3130907909, https://openalex.org/W3179018212, https://openalex.org/W4221023924, https://openalex.org/W3002258616, https://openalex.org/W4285115899, https://openalex.org/W4285192135, https://openalex.org/W4213456346, https://openalex.org/W3211390666, https://openalex.org/W3194195865, https://openalex.org/W2917364154, https://openalex.org/W3175762528, https://openalex.org/W4377013774, https://openalex.org/W3166778962, https://openalex.org/W4367047730, https://openalex.org/W4292640859, https://openalex.org/W3183014921, https://openalex.org/W3016984854, https://openalex.org/W2794430983, https://openalex.org/W4289516682, https://openalex.org/W2993649397, https://openalex.org/W4285606134, https://openalex.org/W3091556452, https://openalex.org/W2084243524, https://openalex.org/W2803956787, https://openalex.org/W2119821739, https://openalex.org/W2195423816, https://openalex.org/W4296769835, https://openalex.org/W4205512712, https://openalex.org/W2781726626, https://openalex.org/W2981037657, https://openalex.org/W2096166399, https://openalex.org/W2608659040, https://openalex.org/W4394666973, https://openalex.org/W3103148433, https://openalex.org/W3125444135 |
| referenced_works_count | 64 |
| abstract_inverted_index.a | 72, 95, 116, 141 |
| abstract_inverted_index.In | 51 |
| abstract_inverted_index.To | 66 |
| abstract_inverted_index.as | 115 |
| abstract_inverted_index.at | 205 |
| abstract_inverted_index.by | 17, 105, 204 |
| abstract_inverted_index.in | 13, 211 |
| abstract_inverted_index.is | 35, 85, 94, 129, 146 |
| abstract_inverted_index.of | 10, 40, 90, 98, 109, 124, 171, 185, 200 |
| abstract_inverted_index.on | 80, 148 |
| abstract_inverted_index.to | 27, 64, 86, 131, 152, 167 |
| abstract_inverted_index.we | 70 |
| abstract_inverted_index.DRL | 81 |
| abstract_inverted_index.ESs | 47 |
| abstract_inverted_index.S2S | 126, 173 |
| abstract_inverted_index.The | 83, 107, 121, 176 |
| abstract_inverted_index.and | 42, 62, 101, 182, 209 |
| abstract_inverted_index.are | 15, 113 |
| abstract_inverted_index.has | 58 |
| abstract_inverted_index.run | 155 |
| abstract_inverted_index.sum | 97 |
| abstract_inverted_index.the | 4, 7, 38, 88, 99, 110, 125, 133, 138, 149, 158, 162, 169, 172, 180, 186, 193, 197, 201, 212 |
| abstract_inverted_index.DAG. | 139 |
| abstract_inverted_index.RIDM | 91, 111, 202 |
| abstract_inverted_index.Task | 1 |
| abstract_inverted_index.deep | 54 |
| abstract_inverted_index.edge | 28, 150 |
| abstract_inverted_index.have | 48 |
| abstract_inverted_index.poor | 59 |
| abstract_inverted_index.soft | 164 |
| abstract_inverted_index.task | 76, 112, 203 |
| abstract_inverted_index.that | 6 |
| abstract_inverted_index.with | 190 |
| abstract_inverted_index.(DRL) | 57 |
| abstract_inverted_index.8.51% | 210 |
| abstract_inverted_index.Next, | 140 |
| abstract_inverted_index.based | 79 |
| abstract_inverted_index.delay | 100 |
| abstract_inverted_index.graph | 119 |
| abstract_inverted_index.image | 22 |
| abstract_inverted_index.layer | 151 |
| abstract_inverted_index.least | 206 |
| abstract_inverted_index.model | 24 |
| abstract_inverted_index.other | 191 |
| abstract_inverted_index.prove | 179 |
| abstract_inverted_index.tasks | 26, 41 |
| abstract_inverted_index.these | 68 |
| abstract_inverted_index.three | 213 |
| abstract_inverted_index.which | 93 |
| abstract_inverted_index.(DAG). | 120 |
| abstract_inverted_index.(ESs). | 30 |
| abstract_inverted_index.(RIDM) | 25 |
| abstract_inverted_index.12.77, | 208 |
| abstract_inverted_index.23.07, | 207 |
| abstract_inverted_index.become | 49 |
| abstract_inverted_index.energy | 102 |
| abstract_inverted_index.method | 166 |
| abstract_inverted_index.neural | 127, 174 |
| abstract_inverted_index.sample | 60 |
| abstract_inverted_index.solves | 3 |
| abstract_inverted_index.tasks, | 92 |
| abstract_inverted_index.within | 137 |
| abstract_inverted_index.acyclic | 118 |
| abstract_inverted_index.address | 67 |
| abstract_inverted_index.adopted | 130 |
| abstract_inverted_index.between | 46 |
| abstract_inverted_index.devices | 12 |
| abstract_inverted_index.follows | 161 |
| abstract_inverted_index.further | 153 |
| abstract_inverted_index.improve | 154, 168 |
| abstract_inverted_index.limited | 16 |
| abstract_inverted_index.massive | 19 |
| abstract_inverted_index.medical | 21 |
| abstract_inverted_index.modeled | 114 |
| abstract_inverted_index.network | 128 |
| abstract_inverted_index.problem | 5 |
| abstract_inverted_index.process | 136 |
| abstract_inverted_index.propose | 71 |
| abstract_inverted_index.results | 178 |
| abstract_inverted_index.servers | 29 |
| abstract_inverted_index.utility | 89, 199 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Compared | 189 |
| abstract_inverted_index.DCDO-DRL | 159, 187, 194 |
| abstract_inverted_index.Finally, | 157 |
| abstract_inverted_index.However, | 31 |
| abstract_inverted_index.NP-hard. | 36 |
| abstract_inverted_index.decision | 135 |
| abstract_inverted_index.designed | 147 |
| abstract_inverted_index.directed | 117 |
| abstract_inverted_index.discrete | 163 |
| abstract_inverted_index.improves | 196 |
| abstract_inverted_index.learning | 56 |
| abstract_inverted_index.maximize | 87 |
| abstract_inverted_index.network. | 175 |
| abstract_inverted_index.sequence | 122 |
| abstract_inverted_index.strategy | 78, 160, 195 |
| abstract_inverted_index.terminal | 11 |
| abstract_inverted_index.weighted | 96 |
| abstract_inverted_index.addition, | 52 |
| abstract_inverted_index.algorithm | 145 |
| abstract_inverted_index.computing | 8, 45 |
| abstract_inverted_index.dependent | 75 |
| abstract_inverted_index.diagnosis | 23 |
| abstract_inverted_index.execution | 198 |
| abstract_inverted_index.generated | 104 |
| abstract_inverted_index.hospitals | 14 |
| abstract_inverted_index.numerical | 177 |
| abstract_inverted_index.objective | 84 |
| abstract_inverted_index.represent | 132 |
| abstract_inverted_index.resources | 9 |
| abstract_inverted_index.strategy. | 188 |
| abstract_inverted_index.developing | 43 |
| abstract_inverted_index.efficiency | 61 |
| abstract_inverted_index.execution. | 106 |
| abstract_inverted_index.model-free | 53 |
| abstract_inverted_index.offloading | 2, 18, 33, 77, 134 |
| abstract_inverted_index.prediction | 123 |
| abstract_inverted_index.processing | 144 |
| abstract_inverted_index.robustness | 170 |
| abstract_inverted_index.scenarios. | 214 |
| abstract_inverted_index.sequential | 32 |
| abstract_inverted_index.(DCDO-DRL). | 82 |
| abstract_inverted_index.algorithms, | 192 |
| abstract_inverted_index.brittleness | 63 |
| abstract_inverted_index.challenges, | 69 |
| abstract_inverted_index.challenges. | 50 |
| abstract_inverted_index.consumption | 103 |
| abstract_inverted_index.convergence | 181 |
| abstract_inverted_index.distributed | 73, 142 |
| abstract_inverted_index.efficiency. | 156 |
| abstract_inverted_index.statistical | 183 |
| abstract_inverted_index.superiority | 184 |
| abstract_inverted_index.Representing | 37 |
| abstract_inverted_index.actor-critic | 165 |
| abstract_inverted_index.dependencies | 39, 108 |
| abstract_inverted_index.collaborative | 44, 74, 143 |
| abstract_inverted_index.reinforcement | 55 |
| abstract_inverted_index.decision-making | 34 |
| abstract_inverted_index.radiomics-based | 20 |
| abstract_inverted_index.hyperparameters. | 65 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.8899999856948853 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.85402299 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |