Drug-drug interaction prediction based on co-medication patterns and graph matching Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1902.08675
Background: The problem of predicting whether a drug combination of arbitrary orders is likely to induce adverse drug reactions is considered in this manuscript. Methods: Novel kernels over drug combinations of arbitrary orders are developed within support vector machines for the prediction. Graph matching methods are used in the novel kernels to measure the similarities among drug combinations, in which drug co-medication patterns are leveraged to measure single drug similarities. Results: The experimental results on a real-world dataset demonstrated that the new kernels achieve an area under the curve (AUC) value 0.912 for the prediction problem. Conclusions: The new methods with drug co-medication based single drug similarities can accurately predict whether a drug combination is likely to induce adverse drug reactions of interest. Keywords: drug-drug interaction prediction; drug combination similarity; co-medication; graph matching
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1902.08675
- https://arxiv.org/pdf/1902.08675
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4310001531
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4310001531Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1902.08675Digital Object Identifier
- Title
-
Drug-drug interaction prediction based on co-medication patterns and graph matchingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-02-22Full publication date if available
- Authors
-
Wen-Hao Chiang, Shen Li, Lang Li, Xia NingList of authors in order
- Landing page
-
https://arxiv.org/abs/1902.08675Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1902.08675Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1902.08675Direct OA link when available
- Concepts
-
Drug, Drug-drug interaction, Matching (statistics), Computer science, Graph, Drug reaction, Similarity (geometry), Support vector machine, Artificial intelligence, Medicine, Data mining, Machine learning, Mathematics, Pharmacology, Theoretical computer science, Statistics, Image (mathematics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4310001531 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1902.08675 |
| ids.doi | https://doi.org/10.48550/arxiv.1902.08675 |
| ids.openalex | https://openalex.org/W4310001531 |
| fwci | |
| type | preprint |
| title | Drug-drug interaction prediction based on co-medication patterns and graph matching |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10211 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Computational Drug Discovery Methods |
| topics[1].id | https://openalex.org/T10375 |
| topics[1].field.id | https://openalex.org/fields/30 |
| topics[1].field.display_name | Pharmacology, Toxicology and Pharmaceutics |
| topics[1].score | 0.9577000141143799 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3004 |
| topics[1].subfield.display_name | Pharmacology |
| topics[1].display_name | Pharmacogenetics and Drug Metabolism |
| topics[2].id | https://openalex.org/T10911 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9404000043869019 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Chemical Synthesis and Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780035454 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7811990976333618 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q8386 |
| concepts[0].display_name | Drug |
| concepts[1].id | https://openalex.org/C2910466267 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5760862231254578 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q718753 |
| concepts[1].display_name | Drug-drug interaction |
| concepts[2].id | https://openalex.org/C165064840 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5716080665588379 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1321061 |
| concepts[2].display_name | Matching (statistics) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5035430788993835 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C132525143 |
| concepts[4].level | 2 |
| concepts[4].score | 0.48371201753616333 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[4].display_name | Graph |
| concepts[5].id | https://openalex.org/C2993432071 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4600090980529785 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q45959 |
| concepts[5].display_name | Drug reaction |
| concepts[6].id | https://openalex.org/C103278499 |
| concepts[6].level | 3 |
| concepts[6].score | 0.45508864521980286 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q254465 |
| concepts[6].display_name | Similarity (geometry) |
| concepts[7].id | https://openalex.org/C12267149 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4276777505874634 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[7].display_name | Support vector machine |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3543170094490051 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C71924100 |
| concepts[9].level | 0 |
| concepts[9].score | 0.33065229654312134 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[9].display_name | Medicine |
| concepts[10].id | https://openalex.org/C124101348 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3276819586753845 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[10].display_name | Data mining |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3253568410873413 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.273820698261261 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C98274493 |
| concepts[13].level | 1 |
| concepts[13].score | 0.2726251482963562 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q128406 |
| concepts[13].display_name | Pharmacology |
| concepts[14].id | https://openalex.org/C80444323 |
| concepts[14].level | 1 |
| concepts[14].score | 0.18142911791801453 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[14].display_name | Theoretical computer science |
| concepts[15].id | https://openalex.org/C105795698 |
| concepts[15].level | 1 |
| concepts[15].score | 0.17015424370765686 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[15].display_name | Statistics |
| concepts[16].id | https://openalex.org/C115961682 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[16].display_name | Image (mathematics) |
| keywords[0].id | https://openalex.org/keywords/drug |
| keywords[0].score | 0.7811990976333618 |
| keywords[0].display_name | Drug |
| keywords[1].id | https://openalex.org/keywords/drug-drug-interaction |
| keywords[1].score | 0.5760862231254578 |
| keywords[1].display_name | Drug-drug interaction |
| keywords[2].id | https://openalex.org/keywords/matching |
| keywords[2].score | 0.5716080665588379 |
| keywords[2].display_name | Matching (statistics) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5035430788993835 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/graph |
| keywords[4].score | 0.48371201753616333 |
| keywords[4].display_name | Graph |
| keywords[5].id | https://openalex.org/keywords/drug-reaction |
| keywords[5].score | 0.4600090980529785 |
| keywords[5].display_name | Drug reaction |
| keywords[6].id | https://openalex.org/keywords/similarity |
| keywords[6].score | 0.45508864521980286 |
| keywords[6].display_name | Similarity (geometry) |
| keywords[7].id | https://openalex.org/keywords/support-vector-machine |
| keywords[7].score | 0.4276777505874634 |
| keywords[7].display_name | Support vector machine |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.3543170094490051 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/medicine |
| keywords[9].score | 0.33065229654312134 |
| keywords[9].display_name | Medicine |
| keywords[10].id | https://openalex.org/keywords/data-mining |
| keywords[10].score | 0.3276819586753845 |
| keywords[10].display_name | Data mining |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.3253568410873413 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.273820698261261 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/pharmacology |
| keywords[13].score | 0.2726251482963562 |
| keywords[13].display_name | Pharmacology |
| keywords[14].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[14].score | 0.18142911791801453 |
| keywords[14].display_name | Theoretical computer science |
| keywords[15].id | https://openalex.org/keywords/statistics |
| keywords[15].score | 0.17015424370765686 |
| keywords[15].display_name | Statistics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1902.08675 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1902.08675 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1902.08675 |
| locations[1].id | doi:10.48550/arxiv.1902.08675 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1902.08675 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5083293836 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2300-738X |
| authorships[0].author.display_name | Wen-Hao Chiang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chiang, Wen-Hao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100333312 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0056-6739 |
| authorships[1].author.display_name | Shen Li |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shen, Li |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100383617 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4832-4499 |
| authorships[2].author.display_name | Lang Li |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Li, Lang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5109302451 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Xia Ning |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Ning, Xia |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1902.08675 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Drug-drug interaction prediction based on co-medication patterns and graph matching |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10211 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Computational Drug Discovery Methods |
| related_works | https://openalex.org/W2090763504, https://openalex.org/W148178222, https://openalex.org/W2104657898, https://openalex.org/W1948992892, https://openalex.org/W1886884218, https://openalex.org/W1910826599, https://openalex.org/W2012353789, https://openalex.org/W2530420969, https://openalex.org/W2051187167, https://openalex.org/W1980100242 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1902.08675 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1902.08675 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1902.08675 |
| primary_location.id | pmh:oai:arXiv.org:1902.08675 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1902.08675 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1902.08675 |
| publication_date | 2019-02-22 |
| publication_year | 2019 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 6, 75, 111 |
| abstract_inverted_index.an | 84 |
| abstract_inverted_index.in | 21, 47, 58 |
| abstract_inverted_index.is | 12, 19, 114 |
| abstract_inverted_index.of | 3, 9, 30, 121 |
| abstract_inverted_index.on | 74 |
| abstract_inverted_index.to | 14, 51, 65, 116 |
| abstract_inverted_index.The | 1, 71, 97 |
| abstract_inverted_index.are | 33, 45, 63 |
| abstract_inverted_index.can | 107 |
| abstract_inverted_index.for | 39, 92 |
| abstract_inverted_index.new | 81, 98 |
| abstract_inverted_index.the | 40, 48, 53, 80, 87, 93 |
| abstract_inverted_index.area | 85 |
| abstract_inverted_index.drug | 7, 17, 28, 56, 60, 68, 101, 105, 112, 119, 127 |
| abstract_inverted_index.over | 27 |
| abstract_inverted_index.that | 79 |
| abstract_inverted_index.this | 22 |
| abstract_inverted_index.used | 46 |
| abstract_inverted_index.with | 100 |
| abstract_inverted_index.(AUC) | 89 |
| abstract_inverted_index.0.912 | 91 |
| abstract_inverted_index.Graph | 42 |
| abstract_inverted_index.Novel | 25 |
| abstract_inverted_index.among | 55 |
| abstract_inverted_index.based | 103 |
| abstract_inverted_index.curve | 88 |
| abstract_inverted_index.graph | 131 |
| abstract_inverted_index.novel | 49 |
| abstract_inverted_index.under | 86 |
| abstract_inverted_index.value | 90 |
| abstract_inverted_index.which | 59 |
| abstract_inverted_index.induce | 15, 117 |
| abstract_inverted_index.likely | 13, 115 |
| abstract_inverted_index.orders | 11, 32 |
| abstract_inverted_index.single | 67, 104 |
| abstract_inverted_index.vector | 37 |
| abstract_inverted_index.within | 35 |
| abstract_inverted_index.achieve | 83 |
| abstract_inverted_index.adverse | 16, 118 |
| abstract_inverted_index.dataset | 77 |
| abstract_inverted_index.kernels | 26, 50, 82 |
| abstract_inverted_index.measure | 52, 66 |
| abstract_inverted_index.methods | 44, 99 |
| abstract_inverted_index.predict | 109 |
| abstract_inverted_index.problem | 2 |
| abstract_inverted_index.results | 73 |
| abstract_inverted_index.support | 36 |
| abstract_inverted_index.whether | 5, 110 |
| abstract_inverted_index.Methods: | 24 |
| abstract_inverted_index.Results: | 70 |
| abstract_inverted_index.machines | 38 |
| abstract_inverted_index.matching | 43, 132 |
| abstract_inverted_index.patterns | 62 |
| abstract_inverted_index.problem. | 95 |
| abstract_inverted_index.Keywords: | 123 |
| abstract_inverted_index.arbitrary | 10, 31 |
| abstract_inverted_index.developed | 34 |
| abstract_inverted_index.drug-drug | 124 |
| abstract_inverted_index.interest. | 122 |
| abstract_inverted_index.leveraged | 64 |
| abstract_inverted_index.reactions | 18, 120 |
| abstract_inverted_index.accurately | 108 |
| abstract_inverted_index.considered | 20 |
| abstract_inverted_index.predicting | 4 |
| abstract_inverted_index.prediction | 94 |
| abstract_inverted_index.real-world | 76 |
| abstract_inverted_index.Background: | 0 |
| abstract_inverted_index.combination | 8, 113, 128 |
| abstract_inverted_index.interaction | 125 |
| abstract_inverted_index.manuscript. | 23 |
| abstract_inverted_index.prediction. | 41 |
| abstract_inverted_index.prediction; | 126 |
| abstract_inverted_index.similarity; | 129 |
| abstract_inverted_index.Conclusions: | 96 |
| abstract_inverted_index.combinations | 29 |
| abstract_inverted_index.demonstrated | 78 |
| abstract_inverted_index.experimental | 72 |
| abstract_inverted_index.similarities | 54, 106 |
| abstract_inverted_index.co-medication | 61, 102 |
| abstract_inverted_index.combinations, | 57 |
| abstract_inverted_index.similarities. | 69 |
| abstract_inverted_index.co-medication; | 130 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.5299999713897705 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile |