DrugLM: A Unified Framework to Enhance Drug-Target Interaction Predictions by Incorporating Textual Embeddings via Language Models Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1101/2025.07.09.657250
Motivation Accurate prediction of drug–target interactions (DTIs) is central to computational drug discovery, offering the potential to reduce experimental costs and accelerate development timelines. While existing deep learning approaches such as Graph Neural Networks and Transformers have shown promise, they often overlook the rich semantic information embedded in textual descriptions of drugs and targets. These descriptions encode critical biomedical knowledge, including mechanisms of action, biological pathways involved, and therapeutic effects of drugs, which can enhance DTI prediction performance. Results We introduce DrugLM , a unified framework that integrates embeddings derived from large language models (LLMs) into DTI-specific model architectures. DrugLM leverages textual descriptions of drugs and targets to generate semantic embeddings using a range of pretrained LLMs. These embeddings can be seamlessly incorporated into existing DTI models. We systematically evaluate multiple LLMs on benchmark DTI datasets and demonstrate strong performance even without fine-tuning. Moreover, supervised parameter-efficient fine-tuning of the LLMs further improves embedding quality, leading to enhanced prediction accuracy. Notably, a simple multilayer perceptron (MLP) using only LLM-derived embeddings surpasses several established DTI methods, underscoring the power of semantic features. Our findings highlight the practical value of integrating LLMs into DTI pipelines and offer a straightforward recipe for improved drug discovery: LLM embeddings of drugs and targets are both effective and easy to use. Availability Our code and dataset are available at https://github.com/ShPhoebus/DrugLM
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2025.07.09.657250
- https://www.biorxiv.org/content/biorxiv/early/2025/07/11/2025.07.09.657250.full.pdf
- OA Status
- green
- Cited By
- 1
- References
- 47
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412202130
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412202130Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2025.07.09.657250Digital Object Identifier
- Title
-
DrugLM: A Unified Framework to Enhance Drug-Target Interaction Predictions by Incorporating Textual Embeddings via Language ModelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-11Full publication date if available
- Authors
-
T. Li, Zhengyu Fang, Xiaoge Zhang, Kaiyu Tang, Huiyuan Chen, Zhimeng Jiang, Tianxiang Zhao, Rong Xu, Feixiong Cheng, Xiao Li, Jing LiList of authors in order
- Landing page
-
https://doi.org/10.1101/2025.07.09.657250Publisher landing page
- PDF URL
-
https://www.biorxiv.org/content/biorxiv/early/2025/07/11/2025.07.09.657250.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.biorxiv.org/content/biorxiv/early/2025/07/11/2025.07.09.657250.full.pdfDirect OA link when available
- Concepts
-
Computer science, Natural language processing, Drug, Artificial intelligence, Psychology, PsychiatryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
47Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412202130 |
|---|---|
| doi | https://doi.org/10.1101/2025.07.09.657250 |
| ids.doi | https://doi.org/10.1101/2025.07.09.657250 |
| ids.openalex | https://openalex.org/W4412202130 |
| fwci | 5.01839543 |
| type | preprint |
| title | DrugLM: A Unified Framework to Enhance Drug-Target Interaction Predictions by Incorporating Textual Embeddings via Language Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10211 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.998199999332428 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Computational Drug Discovery Methods |
| topics[1].id | https://openalex.org/T11710 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9440000057220459 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Biomedical Text Mining and Ontologies |
| topics[2].id | https://openalex.org/T11948 |
| topics[2].field.id | https://openalex.org/fields/25 |
| topics[2].field.display_name | Materials Science |
| topics[2].score | 0.9312999844551086 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2505 |
| topics[2].subfield.display_name | Materials Chemistry |
| topics[2].display_name | Machine Learning in Materials Science |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6066160798072815 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C204321447 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5287301540374756 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[1].display_name | Natural language processing |
| concepts[2].id | https://openalex.org/C2780035454 |
| concepts[2].level | 2 |
| concepts[2].score | 0.42066699266433716 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q8386 |
| concepts[2].display_name | Drug |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4170597791671753 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C15744967 |
| concepts[4].level | 0 |
| concepts[4].score | 0.18854492902755737 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[4].display_name | Psychology |
| concepts[5].id | https://openalex.org/C118552586 |
| concepts[5].level | 1 |
| concepts[5].score | 0.0 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7867 |
| concepts[5].display_name | Psychiatry |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6066160798072815 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/natural-language-processing |
| keywords[1].score | 0.5287301540374756 |
| keywords[1].display_name | Natural language processing |
| keywords[2].id | https://openalex.org/keywords/drug |
| keywords[2].score | 0.42066699266433716 |
| keywords[2].display_name | Drug |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.4170597791671753 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/psychology |
| keywords[4].score | 0.18854492902755737 |
| keywords[4].display_name | Psychology |
| language | en |
| locations[0].id | doi:10.1101/2025.07.09.657250 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.biorxiv.org/content/biorxiv/early/2025/07/11/2025.07.09.657250.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2025.07.09.657250 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5107936019 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | T. Li |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tianyi Li |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5102635951 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7835-0543 |
| authorships[1].author.display_name | Zhengyu Fang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhengyu Fang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5081126251 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Xiaoge Zhang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xiaoge Zhang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5013017921 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Kaiyu Tang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Kaiyu Tang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5004341287 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6360-558X |
| authorships[4].author.display_name | Huiyuan Chen |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Huiyuan Chen |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5002869862 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6933-3952 |
| authorships[5].author.display_name | Zhimeng Jiang |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Zhimeng Jiang |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5053042660 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-4504-7809 |
| authorships[6].author.display_name | Tianxiang Zhao |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Tianxiang Zhao |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5050134236 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-3127-4795 |
| authorships[7].author.display_name | Rong Xu |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Rong Xu |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5021122269 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-1736-2847 |
| authorships[8].author.display_name | Feixiong Cheng |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Feixiong Cheng |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5081030028 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-6413-3481 |
| authorships[9].author.display_name | Xiao Li |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Xiao Li |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5100337051 |
| authorships[10].author.orcid | https://orcid.org/0000-0003-1160-6959 |
| authorships[10].author.display_name | Jing Li |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | Jing Li |
| authorships[10].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.biorxiv.org/content/biorxiv/early/2025/07/11/2025.07.09.657250.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | DrugLM: A Unified Framework to Enhance Drug-Target Interaction Predictions by Incorporating Textual Embeddings via Language Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10211 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.998199999332428 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Computational Drug Discovery Methods |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W3204019825 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2025.07.09.657250 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2025/07/11/2025.07.09.657250.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2025.07.09.657250 |
| primary_location.id | doi:10.1101/2025.07.09.657250 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2025/07/11/2025.07.09.657250.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2025.07.09.657250 |
| publication_date | 2025-07-11 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4402131052, https://openalex.org/W4318981550, https://openalex.org/W3213042299, https://openalex.org/W2907272802, https://openalex.org/W2972965281, https://openalex.org/W2911419886, https://openalex.org/W3035109558, https://openalex.org/W3042289107, https://openalex.org/W3028589594, https://openalex.org/W3093934881, https://openalex.org/W4378942305, https://openalex.org/W3045200674, https://openalex.org/W4366823175, https://openalex.org/W6796581206, https://openalex.org/W3018980093, https://openalex.org/W3135935512, https://openalex.org/W2899788782, https://openalex.org/W4205171481, https://openalex.org/W4385681674, https://openalex.org/W2969996838, https://openalex.org/W4327550249, https://openalex.org/W4407759642, https://openalex.org/W2922229918, https://openalex.org/W1521626043, https://openalex.org/W4400141677, https://openalex.org/W3096561213, https://openalex.org/W4389524207, https://openalex.org/W4384071683, https://openalex.org/W4392182800, https://openalex.org/W3169276553, https://openalex.org/W4378838672, https://openalex.org/W2135505477, https://openalex.org/W4400064522, https://openalex.org/W4310923309, https://openalex.org/W4385849028, https://openalex.org/W4385568170, https://openalex.org/W4407831820, https://openalex.org/W2945827670, https://openalex.org/W2594183968, https://openalex.org/W4400531953, https://openalex.org/W3200379585, https://openalex.org/W4385567993, https://openalex.org/W4398191964, https://openalex.org/W4400023528, https://openalex.org/W4205167309, https://openalex.org/W4401201934, https://openalex.org/W4403593408 |
| referenced_works_count | 47 |
| abstract_inverted_index., | 83 |
| abstract_inverted_index.a | 84, 113, 161, 195 |
| abstract_inverted_index.We | 80, 128 |
| abstract_inverted_index.as | 31 |
| abstract_inverted_index.at | 222 |
| abstract_inverted_index.be | 121 |
| abstract_inverted_index.in | 48 |
| abstract_inverted_index.is | 8 |
| abstract_inverted_index.of | 4, 51, 63, 71, 104, 115, 148, 178, 187, 204 |
| abstract_inverted_index.on | 133 |
| abstract_inverted_index.to | 10, 17, 108, 156, 213 |
| abstract_inverted_index.DTI | 76, 126, 135, 173, 191 |
| abstract_inverted_index.LLM | 202 |
| abstract_inverted_index.Our | 181, 216 |
| abstract_inverted_index.and | 21, 35, 53, 68, 106, 137, 193, 206, 211, 218 |
| abstract_inverted_index.are | 208, 220 |
| abstract_inverted_index.can | 74, 120 |
| abstract_inverted_index.for | 198 |
| abstract_inverted_index.the | 15, 43, 149, 176, 184 |
| abstract_inverted_index.LLMs | 132, 150, 189 |
| abstract_inverted_index.both | 209 |
| abstract_inverted_index.code | 217 |
| abstract_inverted_index.deep | 27 |
| abstract_inverted_index.drug | 12, 200 |
| abstract_inverted_index.easy | 212 |
| abstract_inverted_index.even | 141 |
| abstract_inverted_index.from | 91 |
| abstract_inverted_index.have | 37 |
| abstract_inverted_index.into | 96, 124, 190 |
| abstract_inverted_index.only | 167 |
| abstract_inverted_index.rich | 44 |
| abstract_inverted_index.such | 30 |
| abstract_inverted_index.that | 87 |
| abstract_inverted_index.they | 40 |
| abstract_inverted_index.use. | 214 |
| abstract_inverted_index.(MLP) | 165 |
| abstract_inverted_index.Graph | 32 |
| abstract_inverted_index.LLMs. | 117 |
| abstract_inverted_index.These | 55, 118 |
| abstract_inverted_index.While | 25 |
| abstract_inverted_index.costs | 20 |
| abstract_inverted_index.drugs | 52, 105, 205 |
| abstract_inverted_index.large | 92 |
| abstract_inverted_index.model | 98 |
| abstract_inverted_index.offer | 194 |
| abstract_inverted_index.often | 41 |
| abstract_inverted_index.power | 177 |
| abstract_inverted_index.range | 114 |
| abstract_inverted_index.shown | 38 |
| abstract_inverted_index.using | 112, 166 |
| abstract_inverted_index.value | 186 |
| abstract_inverted_index.which | 73 |
| abstract_inverted_index.(DTIs) | 7 |
| abstract_inverted_index.(LLMs) | 95 |
| abstract_inverted_index.DrugLM | 82, 100 |
| abstract_inverted_index.Neural | 33 |
| abstract_inverted_index.drugs, | 72 |
| abstract_inverted_index.encode | 57 |
| abstract_inverted_index.models | 94 |
| abstract_inverted_index.recipe | 197 |
| abstract_inverted_index.reduce | 18 |
| abstract_inverted_index.simple | 162 |
| abstract_inverted_index.strong | 139 |
| abstract_inverted_index.Results | 79 |
| abstract_inverted_index.action, | 64 |
| abstract_inverted_index.central | 9 |
| abstract_inverted_index.dataset | 219 |
| abstract_inverted_index.derived | 90 |
| abstract_inverted_index.effects | 70 |
| abstract_inverted_index.enhance | 75 |
| abstract_inverted_index.further | 151 |
| abstract_inverted_index.leading | 155 |
| abstract_inverted_index.models. | 127 |
| abstract_inverted_index.several | 171 |
| abstract_inverted_index.targets | 107, 207 |
| abstract_inverted_index.textual | 49, 102 |
| abstract_inverted_index.unified | 85 |
| abstract_inverted_index.without | 142 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Accurate | 2 |
| abstract_inverted_index.Networks | 34 |
| abstract_inverted_index.Notably, | 160 |
| abstract_inverted_index.critical | 58 |
| abstract_inverted_index.datasets | 136 |
| abstract_inverted_index.embedded | 47 |
| abstract_inverted_index.enhanced | 157 |
| abstract_inverted_index.evaluate | 130 |
| abstract_inverted_index.existing | 26, 125 |
| abstract_inverted_index.findings | 182 |
| abstract_inverted_index.generate | 109 |
| abstract_inverted_index.improved | 199 |
| abstract_inverted_index.improves | 152 |
| abstract_inverted_index.language | 93 |
| abstract_inverted_index.learning | 28 |
| abstract_inverted_index.methods, | 174 |
| abstract_inverted_index.multiple | 131 |
| abstract_inverted_index.offering | 14 |
| abstract_inverted_index.overlook | 42 |
| abstract_inverted_index.pathways | 66 |
| abstract_inverted_index.promise, | 39 |
| abstract_inverted_index.quality, | 154 |
| abstract_inverted_index.semantic | 45, 110, 179 |
| abstract_inverted_index.targets. | 54 |
| abstract_inverted_index.Moreover, | 144 |
| abstract_inverted_index.accuracy. | 159 |
| abstract_inverted_index.available | 221 |
| abstract_inverted_index.benchmark | 134 |
| abstract_inverted_index.effective | 210 |
| abstract_inverted_index.embedding | 153 |
| abstract_inverted_index.features. | 180 |
| abstract_inverted_index.framework | 86 |
| abstract_inverted_index.highlight | 183 |
| abstract_inverted_index.including | 61 |
| abstract_inverted_index.introduce | 81 |
| abstract_inverted_index.involved, | 67 |
| abstract_inverted_index.leverages | 101 |
| abstract_inverted_index.pipelines | 192 |
| abstract_inverted_index.potential | 16 |
| abstract_inverted_index.practical | 185 |
| abstract_inverted_index.surpasses | 170 |
| abstract_inverted_index.Motivation | 1 |
| abstract_inverted_index.accelerate | 22 |
| abstract_inverted_index.approaches | 29 |
| abstract_inverted_index.biological | 65 |
| abstract_inverted_index.biomedical | 59 |
| abstract_inverted_index.discovery, | 13 |
| abstract_inverted_index.discovery: | 201 |
| abstract_inverted_index.embeddings | 89, 111, 119, 169, 203 |
| abstract_inverted_index.integrates | 88 |
| abstract_inverted_index.knowledge, | 60 |
| abstract_inverted_index.mechanisms | 62 |
| abstract_inverted_index.multilayer | 163 |
| abstract_inverted_index.perceptron | 164 |
| abstract_inverted_index.prediction | 3, 77, 158 |
| abstract_inverted_index.pretrained | 116 |
| abstract_inverted_index.seamlessly | 122 |
| abstract_inverted_index.supervised | 145 |
| abstract_inverted_index.timelines. | 24 |
| abstract_inverted_index.LLM-derived | 168 |
| abstract_inverted_index.demonstrate | 138 |
| abstract_inverted_index.development | 23 |
| abstract_inverted_index.established | 172 |
| abstract_inverted_index.fine-tuning | 147 |
| abstract_inverted_index.information | 46 |
| abstract_inverted_index.integrating | 188 |
| abstract_inverted_index.performance | 140 |
| abstract_inverted_index.therapeutic | 69 |
| abstract_inverted_index.Availability | 215 |
| abstract_inverted_index.DTI-specific | 97 |
| abstract_inverted_index.Transformers | 36 |
| abstract_inverted_index.descriptions | 50, 56, 103 |
| abstract_inverted_index.experimental | 19 |
| abstract_inverted_index.fine-tuning. | 143 |
| abstract_inverted_index.incorporated | 123 |
| abstract_inverted_index.interactions | 6 |
| abstract_inverted_index.performance. | 78 |
| abstract_inverted_index.underscoring | 175 |
| abstract_inverted_index.computational | 11 |
| abstract_inverted_index.drug–target | 5 |
| abstract_inverted_index.architectures. | 99 |
| abstract_inverted_index.systematically | 129 |
| abstract_inverted_index.straightforward | 196 |
| abstract_inverted_index.parameter-efficient | 146 |
| abstract_inverted_index.https://github.com/ShPhoebus/DrugLM | 223 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 11 |
| citation_normalized_percentile.value | 0.90853905 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |