Dual-Branch Dynamic Graph Convolutional Network for Robust Multi-Label Image Classification Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.55524/ijircst.2024.12.5.13
For the intricate task of multi-label image classification, this paper introduces an innovative approach: an attention-guided dual-branch dynamic graph convolutional network. This methodology is designed to address the difficulties faced by current models when handling multiple labels within images. By integrating multi-scale features, it enhances the retention of original category information and boosts the robustness of feature learning. Utilizing a semantic attention module, the study dynamically reweights feature categories in the training dataset, enhancing the network's capability to identify smaller objects and generate context-sensitive category representations. The effectiveness of the proposed model was evaluated using the MS-COCO2014 imagery dataset, demonstrating superior performance in critical metrics such as classification precision (CP), recall (CR), and F1 score (CF1), outperforming other state-of-the-art models. Furthermore, a cascaded classification structure was implemented to leverage the prior information from static images to inform the processing of dynamic ones, and to utilize original image category data to augment label correlations, thereby enhancing overall classification accuracy.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.55524/ijircst.2024.12.5.13
- OA Status
- diamond
- Cited By
- 13
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403488604
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403488604Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.55524/ijircst.2024.12.5.13Digital Object Identifier
- Title
-
Dual-Branch Dynamic Graph Convolutional Network for Robust Multi-Label Image ClassificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-01Full publication date if available
- Authors
-
Bing Xing Wang, Hongye Zheng, Yingbin Liang, Guanming Huang, Junliang DuList of authors in order
- Landing page
-
https://doi.org/10.55524/ijircst.2024.12.5.13Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.55524/ijircst.2024.12.5.13Direct OA link when available
- Concepts
-
Computer science, Dual (grammatical number), Graph, Artificial intelligence, Image (mathematics), Pattern recognition (psychology), Theoretical computer science, Literature, ArtTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
13Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 9Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403488604 |
|---|---|
| doi | https://doi.org/10.55524/ijircst.2024.12.5.13 |
| ids.doi | https://doi.org/10.55524/ijircst.2024.12.5.13 |
| ids.openalex | https://openalex.org/W4403488604 |
| fwci | 8.30412114 |
| type | article |
| title | Dual-Branch Dynamic Graph Convolutional Network for Robust Multi-Label Image Classification |
| biblio.issue | 5 |
| biblio.volume | 12 |
| biblio.last_page | 99 |
| biblio.first_page | 94 |
| topics[0].id | https://openalex.org/T11550 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9519000053405762 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Text and Document Classification Technologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6338222622871399 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2780980858 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5690036416053772 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q110022 |
| concepts[1].display_name | Dual (grammatical number) |
| concepts[2].id | https://openalex.org/C132525143 |
| concepts[2].level | 2 |
| concepts[2].score | 0.538092315196991 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[2].display_name | Graph |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4532247483730316 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C115961682 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4350818991661072 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[4].display_name | Image (mathematics) |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.3665153384208679 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C80444323 |
| concepts[6].level | 1 |
| concepts[6].score | 0.2387685477733612 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[6].display_name | Theoretical computer science |
| concepts[7].id | https://openalex.org/C124952713 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8242 |
| concepts[7].display_name | Literature |
| concepts[8].id | https://openalex.org/C142362112 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q735 |
| concepts[8].display_name | Art |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6338222622871399 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/dual |
| keywords[1].score | 0.5690036416053772 |
| keywords[1].display_name | Dual (grammatical number) |
| keywords[2].id | https://openalex.org/keywords/graph |
| keywords[2].score | 0.538092315196991 |
| keywords[2].display_name | Graph |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.4532247483730316 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/image |
| keywords[4].score | 0.4350818991661072 |
| keywords[4].display_name | Image (mathematics) |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.3665153384208679 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[6].score | 0.2387685477733612 |
| keywords[6].display_name | Theoretical computer science |
| language | en |
| locations[0].id | doi:10.55524/ijircst.2024.12.5.13 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210230306 |
| locations[0].source.issn | 2347-5552 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2347-5552 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Innovative Research in Computer Science & Technology |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Innovative Research in Computer Science and Technology |
| locations[0].landing_page_url | https://doi.org/10.55524/ijircst.2024.12.5.13 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5056241262 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0633-9999 |
| authorships[0].author.display_name | Bing Xing Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bingxing Wang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5022901348 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Hongye Zheng |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hongye Zheng |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100384384 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2631-4262 |
| authorships[2].author.display_name | Yingbin Liang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yingbin Liang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5112390502 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Guanming Huang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Guanming Huang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5010332378 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2794-2327 |
| authorships[4].author.display_name | Junliang Du |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Junliang Du |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.55524/ijircst.2024.12.5.13 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Dual-Branch Dynamic Graph Convolutional Network for Robust Multi-Label Image Classification |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11550 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9519000053405762 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Text and Document Classification Technologies |
| related_works | https://openalex.org/W2317351040, https://openalex.org/W2952466936, https://openalex.org/W1988622314, https://openalex.org/W2393949104, https://openalex.org/W3046201198, https://openalex.org/W4293061921, https://openalex.org/W2807441102, https://openalex.org/W2033914206, https://openalex.org/W2042327336, https://openalex.org/W2352553236 |
| cited_by_count | 13 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 9 |
| locations_count | 1 |
| best_oa_location.id | doi:10.55524/ijircst.2024.12.5.13 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210230306 |
| best_oa_location.source.issn | 2347-5552 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2347-5552 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Innovative Research in Computer Science & Technology |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Innovative Research in Computer Science and Technology |
| best_oa_location.landing_page_url | https://doi.org/10.55524/ijircst.2024.12.5.13 |
| primary_location.id | doi:10.55524/ijircst.2024.12.5.13 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210230306 |
| primary_location.source.issn | 2347-5552 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2347-5552 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Innovative Research in Computer Science & Technology |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Innovative Research in Computer Science and Technology |
| primary_location.landing_page_url | https://doi.org/10.55524/ijircst.2024.12.5.13 |
| publication_date | 2024-09-01 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 59, 121 |
| abstract_inverted_index.By | 39 |
| abstract_inverted_index.F1 | 113 |
| abstract_inverted_index.an | 11, 14 |
| abstract_inverted_index.as | 106 |
| abstract_inverted_index.by | 30 |
| abstract_inverted_index.in | 69, 102 |
| abstract_inverted_index.is | 23 |
| abstract_inverted_index.it | 43 |
| abstract_inverted_index.of | 4, 47, 55, 88, 139 |
| abstract_inverted_index.to | 25, 77, 127, 135, 143, 149 |
| abstract_inverted_index.For | 0 |
| abstract_inverted_index.The | 86 |
| abstract_inverted_index.and | 51, 81, 112, 142 |
| abstract_inverted_index.the | 1, 27, 45, 53, 63, 70, 74, 89, 95, 129, 137 |
| abstract_inverted_index.was | 92, 125 |
| abstract_inverted_index.This | 21 |
| abstract_inverted_index.data | 148 |
| abstract_inverted_index.from | 132 |
| abstract_inverted_index.such | 105 |
| abstract_inverted_index.task | 3 |
| abstract_inverted_index.this | 8 |
| abstract_inverted_index.when | 33 |
| abstract_inverted_index.(CP), | 109 |
| abstract_inverted_index.(CR), | 111 |
| abstract_inverted_index.faced | 29 |
| abstract_inverted_index.graph | 18 |
| abstract_inverted_index.image | 6, 146 |
| abstract_inverted_index.label | 151 |
| abstract_inverted_index.model | 91 |
| abstract_inverted_index.ones, | 141 |
| abstract_inverted_index.other | 117 |
| abstract_inverted_index.paper | 9 |
| abstract_inverted_index.prior | 130 |
| abstract_inverted_index.score | 114 |
| abstract_inverted_index.study | 64 |
| abstract_inverted_index.using | 94 |
| abstract_inverted_index.(CF1), | 115 |
| abstract_inverted_index.boosts | 52 |
| abstract_inverted_index.images | 134 |
| abstract_inverted_index.inform | 136 |
| abstract_inverted_index.labels | 36 |
| abstract_inverted_index.models | 32 |
| abstract_inverted_index.recall | 110 |
| abstract_inverted_index.static | 133 |
| abstract_inverted_index.within | 37 |
| abstract_inverted_index.address | 26 |
| abstract_inverted_index.augment | 150 |
| abstract_inverted_index.current | 31 |
| abstract_inverted_index.dynamic | 17, 140 |
| abstract_inverted_index.feature | 56, 67 |
| abstract_inverted_index.imagery | 97 |
| abstract_inverted_index.images. | 38 |
| abstract_inverted_index.metrics | 104 |
| abstract_inverted_index.models. | 119 |
| abstract_inverted_index.module, | 62 |
| abstract_inverted_index.objects | 80 |
| abstract_inverted_index.overall | 155 |
| abstract_inverted_index.smaller | 79 |
| abstract_inverted_index.thereby | 153 |
| abstract_inverted_index.utilize | 144 |
| abstract_inverted_index.cascaded | 122 |
| abstract_inverted_index.category | 49, 84, 147 |
| abstract_inverted_index.critical | 103 |
| abstract_inverted_index.dataset, | 72, 98 |
| abstract_inverted_index.designed | 24 |
| abstract_inverted_index.enhances | 44 |
| abstract_inverted_index.generate | 82 |
| abstract_inverted_index.handling | 34 |
| abstract_inverted_index.identify | 78 |
| abstract_inverted_index.leverage | 128 |
| abstract_inverted_index.multiple | 35 |
| abstract_inverted_index.network. | 20 |
| abstract_inverted_index.original | 48, 145 |
| abstract_inverted_index.proposed | 90 |
| abstract_inverted_index.semantic | 60 |
| abstract_inverted_index.superior | 100 |
| abstract_inverted_index.training | 71 |
| abstract_inverted_index.Utilizing | 58 |
| abstract_inverted_index.accuracy. | 157 |
| abstract_inverted_index.approach: | 13 |
| abstract_inverted_index.attention | 61 |
| abstract_inverted_index.enhancing | 73, 154 |
| abstract_inverted_index.evaluated | 93 |
| abstract_inverted_index.features, | 42 |
| abstract_inverted_index.intricate | 2 |
| abstract_inverted_index.learning. | 57 |
| abstract_inverted_index.network's | 75 |
| abstract_inverted_index.precision | 108 |
| abstract_inverted_index.retention | 46 |
| abstract_inverted_index.reweights | 66 |
| abstract_inverted_index.structure | 124 |
| abstract_inverted_index.capability | 76 |
| abstract_inverted_index.categories | 68 |
| abstract_inverted_index.innovative | 12 |
| abstract_inverted_index.introduces | 10 |
| abstract_inverted_index.processing | 138 |
| abstract_inverted_index.robustness | 54 |
| abstract_inverted_index.MS-COCO2014 | 96 |
| abstract_inverted_index.dual-branch | 16 |
| abstract_inverted_index.dynamically | 65 |
| abstract_inverted_index.implemented | 126 |
| abstract_inverted_index.information | 50, 131 |
| abstract_inverted_index.integrating | 40 |
| abstract_inverted_index.methodology | 22 |
| abstract_inverted_index.multi-label | 5 |
| abstract_inverted_index.multi-scale | 41 |
| abstract_inverted_index.performance | 101 |
| abstract_inverted_index.Furthermore, | 120 |
| abstract_inverted_index.difficulties | 28 |
| abstract_inverted_index.convolutional | 19 |
| abstract_inverted_index.correlations, | 152 |
| abstract_inverted_index.demonstrating | 99 |
| abstract_inverted_index.effectiveness | 87 |
| abstract_inverted_index.outperforming | 116 |
| abstract_inverted_index.classification | 107, 123, 156 |
| abstract_inverted_index.classification, | 7 |
| abstract_inverted_index.attention-guided | 15 |
| abstract_inverted_index.representations. | 85 |
| abstract_inverted_index.state-of-the-art | 118 |
| abstract_inverted_index.context-sensitive | 83 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.96907506 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |