Dual-Channel Reliable Breast Ultrasound Image Classification Based on Explainable Attribution and Uncertainty Quantification Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1145/3645259.3645269
This paper focuses on the classification task of breast ultrasound images and researches on the reliability measurement of classification results. We proposed a dual-channel evaluation framework based on the proposed inference reliability and predictive reliability scores. For the inference reliability evaluation, human-aligned and doctor-agreed inference rationales based on the improved feature attribution algorithm SP-RISA are gracefully applied. Uncertainty quantification is used to evaluate the predictive reliability via the Test Time Enhancement. The effectiveness of this reliability evaluation framework has been verified on our breast ultrasound clinical dataset YBUS, and its robustness is verified on the public dataset BUSI. The expected calibration errors on both datasets are significantly lower than traditional evaluation methods, which proves the effectiveness of our proposed reliability measurement.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1145/3645259.3645269
- https://dl.acm.org/doi/pdf/10.1145/3645259.3645269
- OA Status
- gold
- References
- 36
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4396628293
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4396628293Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3645259.3645269Digital Object Identifier
- Title
-
Dual-Channel Reliable Breast Ultrasound Image Classification Based on Explainable Attribution and Uncertainty QuantificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-12Full publication date if available
- Authors
-
Haonan Hu, Shuge Lei, Desheng Sun, Huabin Zhang, Kehong Yuan, Dai Jian, Jijun Tang, Yan Tong, Qiongyu YeList of authors in order
- Landing page
-
https://doi.org/10.1145/3645259.3645269Publisher landing page
- PDF URL
-
https://dl.acm.org/doi/pdf/10.1145/3645259.3645269Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://dl.acm.org/doi/pdf/10.1145/3645259.3645269Direct OA link when available
- Concepts
-
Robustness (evolution), Computer science, Reliability (semiconductor), Inference, Artificial intelligence, Feature extraction, Channel (broadcasting), Machine learning, Breast ultrasound, Pattern recognition (psychology), Data mining, Mammography, Breast cancer, Medicine, Chemistry, Internal medicine, Physics, Quantum mechanics, Cancer, Biochemistry, Computer network, Gene, Power (physics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
36Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4396628293 |
|---|---|
| doi | https://doi.org/10.1145/3645259.3645269 |
| ids.doi | https://doi.org/10.1145/3645259.3645269 |
| ids.openalex | https://openalex.org/W4396628293 |
| fwci | 0.0 |
| type | article |
| title | Dual-Channel Reliable Breast Ultrasound Image Classification Based on Explainable Attribution and Uncertainty Quantification |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 61 |
| biblio.first_page | 53 |
| topics[0].id | https://openalex.org/T10862 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9965999722480774 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | AI in cancer detection |
| topics[1].id | https://openalex.org/T12026 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9866999983787537 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Explainable Artificial Intelligence (XAI) |
| topics[2].id | https://openalex.org/T11652 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9753999710083008 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Imbalanced Data Classification Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C63479239 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7655414342880249 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[0].display_name | Robustness (evolution) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7094879150390625 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C43214815 |
| concepts[2].level | 3 |
| concepts[2].score | 0.7014886736869812 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7310987 |
| concepts[2].display_name | Reliability (semiconductor) |
| concepts[3].id | https://openalex.org/C2776214188 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6773933172225952 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[3].display_name | Inference |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5255947113037109 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C52622490 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4609132409095764 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[5].display_name | Feature extraction |
| concepts[6].id | https://openalex.org/C127162648 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4403764307498932 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[6].display_name | Channel (broadcasting) |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.43172526359558105 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C2777423100 |
| concepts[8].level | 5 |
| concepts[8].score | 0.42051011323928833 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1888238 |
| concepts[8].display_name | Breast ultrasound |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4011504650115967 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C124101348 |
| concepts[10].level | 1 |
| concepts[10].score | 0.39032265543937683 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[10].display_name | Data mining |
| concepts[11].id | https://openalex.org/C2780472235 |
| concepts[11].level | 4 |
| concepts[11].score | 0.10247769951820374 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q324634 |
| concepts[11].display_name | Mammography |
| concepts[12].id | https://openalex.org/C530470458 |
| concepts[12].level | 3 |
| concepts[12].score | 0.09652665257453918 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q128581 |
| concepts[12].display_name | Breast cancer |
| concepts[13].id | https://openalex.org/C71924100 |
| concepts[13].level | 0 |
| concepts[13].score | 0.07331141829490662 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[13].display_name | Medicine |
| concepts[14].id | https://openalex.org/C185592680 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[14].display_name | Chemistry |
| concepts[15].id | https://openalex.org/C126322002 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[15].display_name | Internal medicine |
| concepts[16].id | https://openalex.org/C121332964 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[16].display_name | Physics |
| concepts[17].id | https://openalex.org/C62520636 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[17].display_name | Quantum mechanics |
| concepts[18].id | https://openalex.org/C121608353 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q12078 |
| concepts[18].display_name | Cancer |
| concepts[19].id | https://openalex.org/C55493867 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[19].display_name | Biochemistry |
| concepts[20].id | https://openalex.org/C31258907 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[20].display_name | Computer network |
| concepts[21].id | https://openalex.org/C104317684 |
| concepts[21].level | 2 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[21].display_name | Gene |
| concepts[22].id | https://openalex.org/C163258240 |
| concepts[22].level | 2 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[22].display_name | Power (physics) |
| keywords[0].id | https://openalex.org/keywords/robustness |
| keywords[0].score | 0.7655414342880249 |
| keywords[0].display_name | Robustness (evolution) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7094879150390625 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/reliability |
| keywords[2].score | 0.7014886736869812 |
| keywords[2].display_name | Reliability (semiconductor) |
| keywords[3].id | https://openalex.org/keywords/inference |
| keywords[3].score | 0.6773933172225952 |
| keywords[3].display_name | Inference |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5255947113037109 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/feature-extraction |
| keywords[5].score | 0.4609132409095764 |
| keywords[5].display_name | Feature extraction |
| keywords[6].id | https://openalex.org/keywords/channel |
| keywords[6].score | 0.4403764307498932 |
| keywords[6].display_name | Channel (broadcasting) |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.43172526359558105 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/breast-ultrasound |
| keywords[8].score | 0.42051011323928833 |
| keywords[8].display_name | Breast ultrasound |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.4011504650115967 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/data-mining |
| keywords[10].score | 0.39032265543937683 |
| keywords[10].display_name | Data mining |
| keywords[11].id | https://openalex.org/keywords/mammography |
| keywords[11].score | 0.10247769951820374 |
| keywords[11].display_name | Mammography |
| keywords[12].id | https://openalex.org/keywords/breast-cancer |
| keywords[12].score | 0.09652665257453918 |
| keywords[12].display_name | Breast cancer |
| keywords[13].id | https://openalex.org/keywords/medicine |
| keywords[13].score | 0.07331141829490662 |
| keywords[13].display_name | Medicine |
| language | en |
| locations[0].id | doi:10.1145/3645259.3645269 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://dl.acm.org/doi/pdf/10.1145/3645259.3645269 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 2024 6th International Conference on Image Processing and Machine Vision |
| locations[0].landing_page_url | https://doi.org/10.1145/3645259.3645269 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5025314337 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Haonan Hu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210114105 |
| authorships[0].affiliations[0].raw_affiliation_string | Tsinghua Shenzhen Graduate School, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210114105 |
| authorships[0].institutions[0].ror | https://ror.org/02hhwwz98 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210114105, https://openalex.org/I95457486, https://openalex.org/I99065089 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Tsinghua–Berkeley Shenzhen Institute |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Haonan Hu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Tsinghua Shenzhen Graduate School, China |
| authorships[1].author.id | https://openalex.org/A5070929770 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3814-8230 |
| authorships[1].author.display_name | Shuge Lei |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I155781252 |
| authorships[1].affiliations[0].raw_affiliation_string | University of South Carolina, United States |
| authorships[1].institutions[0].id | https://openalex.org/I155781252 |
| authorships[1].institutions[0].ror | https://ror.org/02b6qw903 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I155781252 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of South Carolina |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shuge Lei |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of South Carolina, United States |
| authorships[2].author.id | https://openalex.org/A5052447580 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0328-1197 |
| authorships[2].author.display_name | Desheng Sun |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210128628 |
| authorships[2].affiliations[0].raw_affiliation_string | Shenzhen Hospital of Perking University, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210128628 |
| authorships[2].institutions[0].ror | https://ror.org/03kkjyb15 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210128628 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Peking University Shenzhen Hospital |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Desheng Sun |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Shenzhen Hospital of Perking University, China |
| authorships[3].author.id | https://openalex.org/A5018303552 |
| authorships[3].author.orcid | https://orcid.org/0009-0003-4353-4627 |
| authorships[3].author.display_name | Huabin Zhang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210153550, https://openalex.org/I99065089 |
| authorships[3].affiliations[0].raw_affiliation_string | Beijing Tsinghua Changgung Hospital, Tsinghua University, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210153550 |
| authorships[3].institutions[0].ror | https://ror.org/050nfgr37 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210153550 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Beijing Tsinghua Chang Gung Hospital |
| authorships[3].institutions[1].id | https://openalex.org/I99065089 |
| authorships[3].institutions[1].ror | https://ror.org/03cve4549 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I99065089 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Tsinghua University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Huabin Zhang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Beijing Tsinghua Changgung Hospital, Tsinghua University, China |
| authorships[4].author.id | https://openalex.org/A5026488862 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8402-9788 |
| authorships[4].author.display_name | Kehong Yuan |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[4].affiliations[0].raw_affiliation_string | Tsinghua University, China |
| authorships[4].institutions[0].id | https://openalex.org/I99065089 |
| authorships[4].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Tsinghua University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Kehong Yuan |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Tsinghua University, China |
| authorships[5].author.id | https://openalex.org/A5070289499 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8958-6973 |
| authorships[5].author.display_name | Dai Jian |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210114105 |
| authorships[5].affiliations[0].raw_affiliation_string | Tsinghua Shenzhen Graduate School, China |
| authorships[5].institutions[0].id | https://openalex.org/I4210114105 |
| authorships[5].institutions[0].ror | https://ror.org/02hhwwz98 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210114105, https://openalex.org/I95457486, https://openalex.org/I99065089 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Tsinghua–Berkeley Shenzhen Institute |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jian Dai |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Tsinghua Shenzhen Graduate School, China |
| authorships[6].author.id | https://openalex.org/A5001619694 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-6377-536X |
| authorships[6].author.display_name | Jijun Tang |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I155781252 |
| authorships[6].affiliations[0].raw_affiliation_string | University of South Carolina, United States |
| authorships[6].institutions[0].id | https://openalex.org/I155781252 |
| authorships[6].institutions[0].ror | https://ror.org/02b6qw903 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I155781252 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | University of South Carolina |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Jijun Tang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | University of South Carolina, United States |
| authorships[7].author.id | https://openalex.org/A5063566469 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-6677-8646 |
| authorships[7].author.display_name | Yan Tong |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I155781252 |
| authorships[7].affiliations[0].raw_affiliation_string | University of South Carolina, United States |
| authorships[7].institutions[0].id | https://openalex.org/I155781252 |
| authorships[7].institutions[0].ror | https://ror.org/02b6qw903 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I155781252 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | University of South Carolina |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Yan Tong |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | University of South Carolina, United States |
| authorships[8].author.id | https://openalex.org/A5027974877 |
| authorships[8].author.orcid | https://orcid.org/0009-0006-7164-1309 |
| authorships[8].author.display_name | Qiongyu Ye |
| authorships[8].countries | CN |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I4210130215 |
| authorships[8].affiliations[0].raw_affiliation_string | Maternal and Child Health Care Hospital of Bao'an, China |
| authorships[8].institutions[0].id | https://openalex.org/I4210130215 |
| authorships[8].institutions[0].ror | https://ror.org/02h1scg40 |
| authorships[8].institutions[0].type | healthcare |
| authorships[8].institutions[0].lineage | https://openalex.org/I4210130215 |
| authorships[8].institutions[0].country_code | CN |
| authorships[8].institutions[0].display_name | Maternal and Child Health Care Hospital of Bao'an |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Qiongyu Ye |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Maternal and Child Health Care Hospital of Bao'an, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://dl.acm.org/doi/pdf/10.1145/3645259.3645269 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Dual-Channel Reliable Breast Ultrasound Image Classification Based on Explainable Attribution and Uncertainty Quantification |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10862 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9965999722480774 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | AI in cancer detection |
| related_works | https://openalex.org/W2055243143, https://openalex.org/W2770593030, https://openalex.org/W3154990682, https://openalex.org/W2560201613, https://openalex.org/W2171975302, https://openalex.org/W2022352247, https://openalex.org/W4312219546, https://openalex.org/W2377538627, https://openalex.org/W2107220315, https://openalex.org/W1996690921 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1145/3645259.3645269 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3645259.3645269 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 2024 6th International Conference on Image Processing and Machine Vision |
| best_oa_location.landing_page_url | https://doi.org/10.1145/3645259.3645269 |
| primary_location.id | doi:10.1145/3645259.3645269 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3645259.3645269 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 2024 6th International Conference on Image Processing and Machine Vision |
| primary_location.landing_page_url | https://doi.org/10.1145/3645259.3645269 |
| publication_date | 2024-01-12 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4296194980, https://openalex.org/W4312517597, https://openalex.org/W3030790048, https://openalex.org/W2083255256, https://openalex.org/W3185256838, https://openalex.org/W6772157302, https://openalex.org/W2295107390, https://openalex.org/W2566376500, https://openalex.org/W2963606198, https://openalex.org/W4214634898, https://openalex.org/W3085389796, https://openalex.org/W2206858481, https://openalex.org/W2962858109, https://openalex.org/W3035253074, https://openalex.org/W3010219363, https://openalex.org/W3037256687, https://openalex.org/W6798726245, https://openalex.org/W3151462836, https://openalex.org/W2891018693, https://openalex.org/W4289639938, https://openalex.org/W2788907134, https://openalex.org/W2976356773, https://openalex.org/W2254249950, https://openalex.org/W2891503716, https://openalex.org/W2809136100, https://openalex.org/W2118246710, https://openalex.org/W2119531662, https://openalex.org/W6677945368, https://openalex.org/W4224980442, https://openalex.org/W2994754739, https://openalex.org/W2969913432, https://openalex.org/W4212774754, https://openalex.org/W3196390567, https://openalex.org/W4300235091, https://openalex.org/W2996290406, https://openalex.org/W3183048323 |
| referenced_works_count | 36 |
| abstract_inverted_index.a | 22 |
| abstract_inverted_index.We | 20 |
| abstract_inverted_index.is | 59, 91 |
| abstract_inverted_index.of | 7, 17, 73, 116 |
| abstract_inverted_index.on | 3, 13, 27, 47, 81, 93, 102 |
| abstract_inverted_index.to | 61 |
| abstract_inverted_index.For | 36 |
| abstract_inverted_index.The | 71, 98 |
| abstract_inverted_index.and | 11, 32, 42, 88 |
| abstract_inverted_index.are | 54, 105 |
| abstract_inverted_index.has | 78 |
| abstract_inverted_index.its | 89 |
| abstract_inverted_index.our | 82, 117 |
| abstract_inverted_index.the | 4, 14, 28, 37, 48, 63, 67, 94, 114 |
| abstract_inverted_index.via | 66 |
| abstract_inverted_index.Test | 68 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.Time | 69 |
| abstract_inverted_index.been | 79 |
| abstract_inverted_index.both | 103 |
| abstract_inverted_index.task | 6 |
| abstract_inverted_index.than | 108 |
| abstract_inverted_index.this | 74 |
| abstract_inverted_index.used | 60 |
| abstract_inverted_index.BUSI. | 97 |
| abstract_inverted_index.YBUS, | 87 |
| abstract_inverted_index.based | 26, 46 |
| abstract_inverted_index.lower | 107 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.which | 112 |
| abstract_inverted_index.breast | 8, 83 |
| abstract_inverted_index.errors | 101 |
| abstract_inverted_index.images | 10 |
| abstract_inverted_index.proves | 113 |
| abstract_inverted_index.public | 95 |
| abstract_inverted_index.SP-RISA | 53 |
| abstract_inverted_index.dataset | 86, 96 |
| abstract_inverted_index.feature | 50 |
| abstract_inverted_index.focuses | 2 |
| abstract_inverted_index.scores. | 35 |
| abstract_inverted_index.applied. | 56 |
| abstract_inverted_index.clinical | 85 |
| abstract_inverted_index.datasets | 104 |
| abstract_inverted_index.evaluate | 62 |
| abstract_inverted_index.expected | 99 |
| abstract_inverted_index.improved | 49 |
| abstract_inverted_index.methods, | 111 |
| abstract_inverted_index.proposed | 21, 29, 118 |
| abstract_inverted_index.results. | 19 |
| abstract_inverted_index.verified | 80, 92 |
| abstract_inverted_index.algorithm | 52 |
| abstract_inverted_index.framework | 25, 77 |
| abstract_inverted_index.inference | 30, 38, 44 |
| abstract_inverted_index.evaluation | 24, 76, 110 |
| abstract_inverted_index.gracefully | 55 |
| abstract_inverted_index.predictive | 33, 64 |
| abstract_inverted_index.rationales | 45 |
| abstract_inverted_index.researches | 12 |
| abstract_inverted_index.robustness | 90 |
| abstract_inverted_index.ultrasound | 9, 84 |
| abstract_inverted_index.Uncertainty | 57 |
| abstract_inverted_index.attribution | 51 |
| abstract_inverted_index.calibration | 100 |
| abstract_inverted_index.evaluation, | 40 |
| abstract_inverted_index.measurement | 16 |
| abstract_inverted_index.reliability | 15, 31, 34, 39, 65, 75, 119 |
| abstract_inverted_index.traditional | 109 |
| abstract_inverted_index.Enhancement. | 70 |
| abstract_inverted_index.dual-channel | 23 |
| abstract_inverted_index.measurement. | 120 |
| abstract_inverted_index.doctor-agreed | 43 |
| abstract_inverted_index.effectiveness | 72, 115 |
| abstract_inverted_index.human-aligned | 41 |
| abstract_inverted_index.significantly | 106 |
| abstract_inverted_index.classification | 5, 18 |
| abstract_inverted_index.quantification | 58 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 9 |
| citation_normalized_percentile.value | 0.05959713 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |