Dual Diffusion Architecture for Fisheye Image Rectification: Synthetic-to-Real Generalization Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2301.11785
Fisheye image rectification has a long-term unresolved issue with synthetic-to-real generalization. In most previous works, the model trained on the synthetic images obtains unsatisfactory performance on the real-world fisheye image. To this end, we propose a Dual Diffusion Architecture (DDA) for the fisheye rectification with a better generalization ability. The proposed DDA is simultaneously trained with paired synthetic fisheye images and unlabeled real fisheye images. By gradually introducing noises, the synthetic and real fisheye images can eventually develop into a consistent noise distribution, improving the generalization and achieving unlabeled real fisheye correction. The original image serves as the prior guidance in existing DDPMs (Denoising Diffusion Probabilistic Models). However, the non-negligible indeterminate relationship between the prior condition and the target affects the generation performance. Especially in the rectification task, the radial distortion can cause significant artifacts. Therefore, we provide an unsupervised one-pass network that produces a plausible new condition to strengthen guidance. This network can be regarded as an alternate scheme for fast producing reliable results without iterative inference. Compared with the state-of-the-art methods, our approach can reach superior performance in both synthetic and real fisheye image corrections.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2301.11785
- https://arxiv.org/pdf/2301.11785
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4318621121
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4318621121Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2301.11785Digital Object Identifier
- Title
-
Dual Diffusion Architecture for Fisheye Image Rectification: Synthetic-to-Real GeneralizationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-26Full publication date if available
- Authors
-
Shangrong Yang, Chunyu Lin, Kang Liao, Yao ZhaoList of authors in order
- Landing page
-
https://arxiv.org/abs/2301.11785Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2301.11785Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2301.11785Direct OA link when available
- Concepts
-
Generalization, Artificial intelligence, Computer science, Rectification, Synthetic data, Computer vision, Image (mathematics), Distortion (music), Pyramid (geometry), Pattern recognition (psychology), Mathematics, Amplifier, Computer network, Power (physics), Physics, Bandwidth (computing), Quantum mechanics, Geometry, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4318621121 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2301.11785 |
| ids.doi | https://doi.org/10.48550/arxiv.2301.11785 |
| ids.openalex | https://openalex.org/W4318621121 |
| fwci | |
| type | preprint |
| title | Dual Diffusion Architecture for Fisheye Image Rectification: Synthetic-to-Real Generalization |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10688 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9991000294685364 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Image and Signal Denoising Methods |
| topics[1].id | https://openalex.org/T11105 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9973999857902527 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Image Processing Techniques |
| topics[2].id | https://openalex.org/T13114 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9837999939918518 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2214 |
| topics[2].subfield.display_name | Media Technology |
| topics[2].display_name | Image Processing Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C177148314 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7376313209533691 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q170084 |
| concepts[0].display_name | Generalization |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7168937921524048 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7075282335281372 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C50942859 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6169252395629883 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q4967193 |
| concepts[3].display_name | Rectification |
| concepts[4].id | https://openalex.org/C160920958 |
| concepts[4].level | 2 |
| concepts[4].score | 0.52384352684021 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7662746 |
| concepts[4].display_name | Synthetic data |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5142214298248291 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| concepts[6].id | https://openalex.org/C115961682 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4901750683784485 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[6].display_name | Image (mathematics) |
| concepts[7].id | https://openalex.org/C126780896 |
| concepts[7].level | 4 |
| concepts[7].score | 0.4672142565250397 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q899871 |
| concepts[7].display_name | Distortion (music) |
| concepts[8].id | https://openalex.org/C142575187 |
| concepts[8].level | 2 |
| concepts[8].score | 0.413432776927948 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3358290 |
| concepts[8].display_name | Pyramid (geometry) |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4064542353153229 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.1989554762840271 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C194257627 |
| concepts[11].level | 3 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q211554 |
| concepts[11].display_name | Amplifier |
| concepts[12].id | https://openalex.org/C31258907 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[12].display_name | Computer network |
| concepts[13].id | https://openalex.org/C163258240 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[13].display_name | Power (physics) |
| concepts[14].id | https://openalex.org/C121332964 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[14].display_name | Physics |
| concepts[15].id | https://openalex.org/C2776257435 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1576430 |
| concepts[15].display_name | Bandwidth (computing) |
| concepts[16].id | https://openalex.org/C62520636 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[16].display_name | Quantum mechanics |
| concepts[17].id | https://openalex.org/C2524010 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[17].display_name | Geometry |
| concepts[18].id | https://openalex.org/C134306372 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[18].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/generalization |
| keywords[0].score | 0.7376313209533691 |
| keywords[0].display_name | Generalization |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.7168937921524048 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7075282335281372 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/rectification |
| keywords[3].score | 0.6169252395629883 |
| keywords[3].display_name | Rectification |
| keywords[4].id | https://openalex.org/keywords/synthetic-data |
| keywords[4].score | 0.52384352684021 |
| keywords[4].display_name | Synthetic data |
| keywords[5].id | https://openalex.org/keywords/computer-vision |
| keywords[5].score | 0.5142214298248291 |
| keywords[5].display_name | Computer vision |
| keywords[6].id | https://openalex.org/keywords/image |
| keywords[6].score | 0.4901750683784485 |
| keywords[6].display_name | Image (mathematics) |
| keywords[7].id | https://openalex.org/keywords/distortion |
| keywords[7].score | 0.4672142565250397 |
| keywords[7].display_name | Distortion (music) |
| keywords[8].id | https://openalex.org/keywords/pyramid |
| keywords[8].score | 0.413432776927948 |
| keywords[8].display_name | Pyramid (geometry) |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.4064542353153229 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.1989554762840271 |
| keywords[10].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2301.11785 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2301.11785 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2301.11785 |
| locations[1].id | doi:10.48550/arxiv.2301.11785 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2301.11785 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101305801 |
| authorships[0].author.orcid | https://orcid.org/0009-0008-3419-9501 |
| authorships[0].author.display_name | Shangrong Yang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yang, Shangrong |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5050402282 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2847-0349 |
| authorships[1].author.display_name | Chunyu Lin |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lin, Chunyu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101618924 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7487-3651 |
| authorships[2].author.display_name | Kang Liao |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Liao, Kang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100362745 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8581-9554 |
| authorships[3].author.display_name | Yao Zhao |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Zhao, Yao |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2301.11785 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-01-31T00:00:00 |
| display_name | Dual Diffusion Architecture for Fisheye Image Rectification: Synthetic-to-Real Generalization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10688 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9991000294685364 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Image and Signal Denoising Methods |
| related_works | https://openalex.org/W2355499516, https://openalex.org/W3210974833, https://openalex.org/W2599000612, https://openalex.org/W2811475781, https://openalex.org/W2094246381, https://openalex.org/W2361137193, https://openalex.org/W2377736761, https://openalex.org/W2353928006, https://openalex.org/W4294566840, https://openalex.org/W2370721955 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2301.11785 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2301.11785 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2301.11785 |
| primary_location.id | pmh:oai:arXiv.org:2301.11785 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2301.11785 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2301.11785 |
| publication_date | 2023-01-26 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 4, 35, 45, 79, 144 |
| abstract_inverted_index.By | 65 |
| abstract_inverted_index.In | 11 |
| abstract_inverted_index.To | 30 |
| abstract_inverted_index.an | 138, 157 |
| abstract_inverted_index.as | 96, 156 |
| abstract_inverted_index.be | 154 |
| abstract_inverted_index.in | 100, 124, 179 |
| abstract_inverted_index.is | 52 |
| abstract_inverted_index.on | 18, 25 |
| abstract_inverted_index.to | 148 |
| abstract_inverted_index.we | 33, 136 |
| abstract_inverted_index.DDA | 51 |
| abstract_inverted_index.The | 49, 92 |
| abstract_inverted_index.and | 60, 71, 86, 116, 182 |
| abstract_inverted_index.can | 75, 131, 153, 175 |
| abstract_inverted_index.for | 40, 160 |
| abstract_inverted_index.has | 3 |
| abstract_inverted_index.new | 146 |
| abstract_inverted_index.our | 173 |
| abstract_inverted_index.the | 15, 19, 26, 41, 69, 84, 97, 108, 113, 117, 120, 125, 128, 170 |
| abstract_inverted_index.Dual | 36 |
| abstract_inverted_index.This | 151 |
| abstract_inverted_index.both | 180 |
| abstract_inverted_index.end, | 32 |
| abstract_inverted_index.fast | 161 |
| abstract_inverted_index.into | 78 |
| abstract_inverted_index.most | 12 |
| abstract_inverted_index.real | 62, 72, 89, 183 |
| abstract_inverted_index.that | 142 |
| abstract_inverted_index.this | 31 |
| abstract_inverted_index.with | 8, 44, 55, 169 |
| abstract_inverted_index.(DDA) | 39 |
| abstract_inverted_index.DDPMs | 102 |
| abstract_inverted_index.cause | 132 |
| abstract_inverted_index.image | 1, 94, 185 |
| abstract_inverted_index.issue | 7 |
| abstract_inverted_index.model | 16 |
| abstract_inverted_index.noise | 81 |
| abstract_inverted_index.prior | 98, 114 |
| abstract_inverted_index.reach | 176 |
| abstract_inverted_index.task, | 127 |
| abstract_inverted_index.better | 46 |
| abstract_inverted_index.image. | 29 |
| abstract_inverted_index.images | 21, 59, 74 |
| abstract_inverted_index.paired | 56 |
| abstract_inverted_index.radial | 129 |
| abstract_inverted_index.scheme | 159 |
| abstract_inverted_index.serves | 95 |
| abstract_inverted_index.target | 118 |
| abstract_inverted_index.works, | 14 |
| abstract_inverted_index.Fisheye | 0 |
| abstract_inverted_index.affects | 119 |
| abstract_inverted_index.between | 112 |
| abstract_inverted_index.develop | 77 |
| abstract_inverted_index.fisheye | 28, 42, 58, 63, 73, 90, 184 |
| abstract_inverted_index.images. | 64 |
| abstract_inverted_index.network | 141, 152 |
| abstract_inverted_index.noises, | 68 |
| abstract_inverted_index.obtains | 22 |
| abstract_inverted_index.propose | 34 |
| abstract_inverted_index.provide | 137 |
| abstract_inverted_index.results | 164 |
| abstract_inverted_index.trained | 17, 54 |
| abstract_inverted_index.without | 165 |
| abstract_inverted_index.Compared | 168 |
| abstract_inverted_index.However, | 107 |
| abstract_inverted_index.Models). | 106 |
| abstract_inverted_index.ability. | 48 |
| abstract_inverted_index.approach | 174 |
| abstract_inverted_index.existing | 101 |
| abstract_inverted_index.guidance | 99 |
| abstract_inverted_index.methods, | 172 |
| abstract_inverted_index.one-pass | 140 |
| abstract_inverted_index.original | 93 |
| abstract_inverted_index.previous | 13 |
| abstract_inverted_index.produces | 143 |
| abstract_inverted_index.proposed | 50 |
| abstract_inverted_index.regarded | 155 |
| abstract_inverted_index.reliable | 163 |
| abstract_inverted_index.superior | 177 |
| abstract_inverted_index.Diffusion | 37, 104 |
| abstract_inverted_index.achieving | 87 |
| abstract_inverted_index.alternate | 158 |
| abstract_inverted_index.condition | 115, 147 |
| abstract_inverted_index.gradually | 66 |
| abstract_inverted_index.guidance. | 150 |
| abstract_inverted_index.improving | 83 |
| abstract_inverted_index.iterative | 166 |
| abstract_inverted_index.long-term | 5 |
| abstract_inverted_index.plausible | 145 |
| abstract_inverted_index.producing | 162 |
| abstract_inverted_index.synthetic | 20, 57, 70, 181 |
| abstract_inverted_index.unlabeled | 61, 88 |
| abstract_inverted_index.(Denoising | 103 |
| abstract_inverted_index.Especially | 123 |
| abstract_inverted_index.Therefore, | 135 |
| abstract_inverted_index.artifacts. | 134 |
| abstract_inverted_index.consistent | 80 |
| abstract_inverted_index.distortion | 130 |
| abstract_inverted_index.eventually | 76 |
| abstract_inverted_index.generation | 121 |
| abstract_inverted_index.inference. | 167 |
| abstract_inverted_index.real-world | 27 |
| abstract_inverted_index.strengthen | 149 |
| abstract_inverted_index.unresolved | 6 |
| abstract_inverted_index.correction. | 91 |
| abstract_inverted_index.introducing | 67 |
| abstract_inverted_index.performance | 24, 178 |
| abstract_inverted_index.significant | 133 |
| abstract_inverted_index.Architecture | 38 |
| abstract_inverted_index.corrections. | 186 |
| abstract_inverted_index.performance. | 122 |
| abstract_inverted_index.relationship | 111 |
| abstract_inverted_index.unsupervised | 139 |
| abstract_inverted_index.Probabilistic | 105 |
| abstract_inverted_index.distribution, | 82 |
| abstract_inverted_index.indeterminate | 110 |
| abstract_inverted_index.rectification | 2, 43, 126 |
| abstract_inverted_index.generalization | 47, 85 |
| abstract_inverted_index.non-negligible | 109 |
| abstract_inverted_index.simultaneously | 53 |
| abstract_inverted_index.unsatisfactory | 23 |
| abstract_inverted_index.generalization. | 10 |
| abstract_inverted_index.state-of-the-art | 171 |
| abstract_inverted_index.synthetic-to-real | 9 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/14 |
| sustainable_development_goals[0].score | 0.7400000095367432 |
| sustainable_development_goals[0].display_name | Life below water |
| citation_normalized_percentile |