Dual-view Correlation Hybrid Attention Network for Robust Holistic Mammogram Classification Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.24963/ijcai.2023/168
Mammogram image is important for breast cancer screening, and typically obtained in a dual-view form, i.e., cranio-caudal (CC) and mediolateral oblique (MLO), to provide complementary information for clinical decisions. However, previous methods mostly learn features from the two views independently, which violates the clinical knowledge and ignores the importance of dual-view correlation in the feature learning. In this paper, we propose a dual-view correlation hybrid attention network (DCHA-Net) for robust holistic mammogram classification. Specifically, DCHA-Net is carefully designed to extract and reinvent deep feature maps for the two views, and meanwhile to maximize the underlying correlations between them. A hybrid attention module, consisting of local relation and non-local attention blocks, is proposed to alleviate the spatial misalignment of the paired views in the correlation maximization. A dual-view correlation loss is introduced to maximize the feature similarity between corresponding strip-like regions with equal distance to the chest wall, motivated by the fact that their features represent the same breast tissues, and thus should be highly-correlated with each other. Experimental results on the two public datasets, i.e., INbreast and CBIS-DDSM, demonstrate that the DCHA-Net can well preserve and maximize feature correlations across views, and thus outperforms previous state-of-the-art methods for classifying a whole mammogram as malignant or not.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.24963/ijcai.2023/168
- https://www.ijcai.org/proceedings/2023/0168.pdf
- OA Status
- gold
- Cited By
- 3
- References
- 39
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4385764398
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4385764398Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.24963/ijcai.2023/168Digital Object Identifier
- Title
-
Dual-view Correlation Hybrid Attention Network for Robust Holistic Mammogram ClassificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-01Full publication date if available
- Authors
-
Zhiwei Wang, Junlin Xian, Kangyi Liu, Xin Li, Qiang Li, Xin YangList of authors in order
- Landing page
-
https://doi.org/10.24963/ijcai.2023/168Publisher landing page
- PDF URL
-
https://www.ijcai.org/proceedings/2023/0168.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.ijcai.org/proceedings/2023/0168.pdfDirect OA link when available
- Concepts
-
Feature (linguistics), Correlation, Artificial intelligence, Dual (grammatical number), Similarity (geometry), Pattern recognition (psychology), Computer science, Maximization, Relation (database), Machine learning, Mathematics, Image (mathematics), Data mining, Mathematical optimization, Philosophy, Linguistics, Art, Geometry, LiteratureTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
39Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4385764398 |
|---|---|
| doi | https://doi.org/10.24963/ijcai.2023/168 |
| ids.doi | https://doi.org/10.24963/ijcai.2023/168 |
| ids.openalex | https://openalex.org/W4385764398 |
| fwci | 0.76632866 |
| type | article |
| title | Dual-view Correlation Hybrid Attention Network for Robust Holistic Mammogram Classification |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 1523 |
| biblio.first_page | 1515 |
| topics[0].id | https://openalex.org/T10862 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | AI in cancer detection |
| topics[1].id | https://openalex.org/T11775 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9922000169754028 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | COVID-19 diagnosis using AI |
| topics[2].id | https://openalex.org/T12422 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9921000003814697 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Radiomics and Machine Learning in Medical Imaging |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776401178 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7231156826019287 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[0].display_name | Feature (linguistics) |
| concepts[1].id | https://openalex.org/C117220453 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7227714657783508 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5172842 |
| concepts[1].display_name | Correlation |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.677638590335846 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2780980858 |
| concepts[3].level | 2 |
| concepts[3].score | 0.617112934589386 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q110022 |
| concepts[3].display_name | Dual (grammatical number) |
| concepts[4].id | https://openalex.org/C103278499 |
| concepts[4].level | 3 |
| concepts[4].score | 0.6052311062812805 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q254465 |
| concepts[4].display_name | Similarity (geometry) |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5842927098274231 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.5692996978759766 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C2776330181 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5660419464111328 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q18358244 |
| concepts[7].display_name | Maximization |
| concepts[8].id | https://openalex.org/C25343380 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4430193305015564 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q277521 |
| concepts[8].display_name | Relation (database) |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3592912554740906 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.3351978063583374 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C115961682 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3043151795864105 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[11].display_name | Image (mathematics) |
| concepts[12].id | https://openalex.org/C124101348 |
| concepts[12].level | 1 |
| concepts[12].score | 0.24394994974136353 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[12].display_name | Data mining |
| concepts[13].id | https://openalex.org/C126255220 |
| concepts[13].level | 1 |
| concepts[13].score | 0.09284111857414246 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[13].display_name | Mathematical optimization |
| concepts[14].id | https://openalex.org/C138885662 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[14].display_name | Philosophy |
| concepts[15].id | https://openalex.org/C41895202 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[15].display_name | Linguistics |
| concepts[16].id | https://openalex.org/C142362112 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q735 |
| concepts[16].display_name | Art |
| concepts[17].id | https://openalex.org/C2524010 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[17].display_name | Geometry |
| concepts[18].id | https://openalex.org/C124952713 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q8242 |
| concepts[18].display_name | Literature |
| keywords[0].id | https://openalex.org/keywords/feature |
| keywords[0].score | 0.7231156826019287 |
| keywords[0].display_name | Feature (linguistics) |
| keywords[1].id | https://openalex.org/keywords/correlation |
| keywords[1].score | 0.7227714657783508 |
| keywords[1].display_name | Correlation |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.677638590335846 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/dual |
| keywords[3].score | 0.617112934589386 |
| keywords[3].display_name | Dual (grammatical number) |
| keywords[4].id | https://openalex.org/keywords/similarity |
| keywords[4].score | 0.6052311062812805 |
| keywords[4].display_name | Similarity (geometry) |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.5842927098274231 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.5692996978759766 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/maximization |
| keywords[7].score | 0.5660419464111328 |
| keywords[7].display_name | Maximization |
| keywords[8].id | https://openalex.org/keywords/relation |
| keywords[8].score | 0.4430193305015564 |
| keywords[8].display_name | Relation (database) |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.3592912554740906 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.3351978063583374 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/image |
| keywords[11].score | 0.3043151795864105 |
| keywords[11].display_name | Image (mathematics) |
| keywords[12].id | https://openalex.org/keywords/data-mining |
| keywords[12].score | 0.24394994974136353 |
| keywords[12].display_name | Data mining |
| keywords[13].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[13].score | 0.09284111857414246 |
| keywords[13].display_name | Mathematical optimization |
| language | en |
| locations[0].id | doi:10.24963/ijcai.2023/168 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | https://www.ijcai.org/proceedings/2023/0168.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.24963/ijcai.2023/168 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100449952 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1612-8573 |
| authorships[0].author.display_name | Zhiwei Wang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210138186, https://openalex.org/I47720641 |
| authorships[0].affiliations[0].raw_affiliation_string | Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I47720641 |
| authorships[0].affiliations[1].raw_affiliation_string | MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology |
| authorships[0].institutions[0].id | https://openalex.org/I47720641 |
| authorships[0].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[0].institutions[1].id | https://openalex.org/I4210138186 |
| authorships[0].institutions[1].ror | https://ror.org/03c9ncn37 |
| authorships[0].institutions[1].type | facility |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210138186 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Wuhan National Laboratory for Optoelectronics |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhiwei Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology |
| authorships[1].author.id | https://openalex.org/A5082280881 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9230-5818 |
| authorships[1].author.display_name | Junlin Xian |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Electronic Information and Communications, Huazhong University of Science and Technology |
| authorships[1].institutions[0].id | https://openalex.org/I47720641 |
| authorships[1].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Junlin Xian |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Electronic Information and Communications, Huazhong University of Science and Technology |
| authorships[2].author.id | https://openalex.org/A5113371029 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Kangyi Liu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Electronic Information and Communications, Huazhong University of Science and Technology |
| authorships[2].institutions[0].id | https://openalex.org/I47720641 |
| authorships[2].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kangyi Liu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Electronic Information and Communications, Huazhong University of Science and Technology |
| authorships[3].author.id | https://openalex.org/A5100354006 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0469-5121 |
| authorships[3].author.display_name | Xin Li |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210138186, https://openalex.org/I47720641 |
| authorships[3].affiliations[0].raw_affiliation_string | Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I47720641 |
| authorships[3].affiliations[1].raw_affiliation_string | MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology |
| authorships[3].institutions[0].id | https://openalex.org/I47720641 |
| authorships[3].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[3].institutions[1].id | https://openalex.org/I4210138186 |
| authorships[3].institutions[1].ror | https://ror.org/03c9ncn37 |
| authorships[3].institutions[1].type | facility |
| authorships[3].institutions[1].lineage | https://openalex.org/I4210138186 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Wuhan National Laboratory for Optoelectronics |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xin Li |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology |
| authorships[4].author.id | https://openalex.org/A5100430031 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9815-4432 |
| authorships[4].author.display_name | Qiang Li |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210138186, https://openalex.org/I47720641 |
| authorships[4].affiliations[0].raw_affiliation_string | Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I47720641 |
| authorships[4].affiliations[1].raw_affiliation_string | MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology |
| authorships[4].institutions[0].id | https://openalex.org/I47720641 |
| authorships[4].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[4].institutions[1].id | https://openalex.org/I4210138186 |
| authorships[4].institutions[1].ror | https://ror.org/03c9ncn37 |
| authorships[4].institutions[1].type | facility |
| authorships[4].institutions[1].lineage | https://openalex.org/I4210138186 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | Wuhan National Laboratory for Optoelectronics |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Qiang Li |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology |
| authorships[5].author.id | https://openalex.org/A5101546933 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-9043-4475 |
| authorships[5].author.display_name | Xin Yang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Electronic Information and Communications, Huazhong University of Science and Technology |
| authorships[5].institutions[0].id | https://openalex.org/I47720641 |
| authorships[5].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Xin Yang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Electronic Information and Communications, Huazhong University of Science and Technology |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ijcai.org/proceedings/2023/0168.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Dual-view Correlation Hybrid Attention Network for Robust Holistic Mammogram Classification |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10862 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | AI in cancer detection |
| related_works | https://openalex.org/W2317351040, https://openalex.org/W2375480909, https://openalex.org/W2353314428, https://openalex.org/W2947806671, https://openalex.org/W2012019886, https://openalex.org/W2952466936, https://openalex.org/W2390878257, https://openalex.org/W3147584709, https://openalex.org/W2166090428, https://openalex.org/W1988622314 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.24963/ijcai.2023/168 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.ijcai.org/proceedings/2023/0168.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.24963/ijcai.2023/168 |
| primary_location.id | doi:10.24963/ijcai.2023/168 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | https://www.ijcai.org/proceedings/2023/0168.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.24963/ijcai.2023/168 |
| publication_date | 2023-08-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3162552464, https://openalex.org/W2284539364, https://openalex.org/W2101668496, https://openalex.org/W2280650650, https://openalex.org/W2216351247, https://openalex.org/W2755855890, https://openalex.org/W2527654160, https://openalex.org/W2133458583, https://openalex.org/W2565834876, https://openalex.org/W2942489928, https://openalex.org/W2776937175, https://openalex.org/W6803771590, https://openalex.org/W4205943891, https://openalex.org/W2086543716, https://openalex.org/W6864487941, https://openalex.org/W2804850886, https://openalex.org/W2955687827, https://openalex.org/W6863944781, https://openalex.org/W2105929396, https://openalex.org/W3203686404, https://openalex.org/W2616247523, https://openalex.org/W2891839580, https://openalex.org/W3001021123, https://openalex.org/W6864014924, https://openalex.org/W3203079337, https://openalex.org/W2752879928, https://openalex.org/W2971721366, https://openalex.org/W2563442007, https://openalex.org/W3200587919, https://openalex.org/W3162189952, https://openalex.org/W2983446232, https://openalex.org/W2194775991, https://openalex.org/W2963091558, https://openalex.org/W2979744002, https://openalex.org/W4293584584, https://openalex.org/W2962858109, https://openalex.org/W4306291145, https://openalex.org/W4385245566, https://openalex.org/W3159480464 |
| referenced_works_count | 39 |
| abstract_inverted_index.A | 98, 125 |
| abstract_inverted_index.a | 12, 61, 199 |
| abstract_inverted_index.In | 56 |
| abstract_inverted_index.as | 202 |
| abstract_inverted_index.be | 162 |
| abstract_inverted_index.by | 148 |
| abstract_inverted_index.in | 11, 52, 121 |
| abstract_inverted_index.is | 2, 75, 110, 129 |
| abstract_inverted_index.of | 49, 103, 117 |
| abstract_inverted_index.on | 169 |
| abstract_inverted_index.or | 204 |
| abstract_inverted_index.to | 22, 78, 91, 112, 131, 143 |
| abstract_inverted_index.we | 59 |
| abstract_inverted_index.and | 8, 18, 45, 80, 89, 106, 159, 176, 185, 191 |
| abstract_inverted_index.can | 182 |
| abstract_inverted_index.for | 4, 26, 68, 85, 197 |
| abstract_inverted_index.the | 36, 42, 47, 53, 86, 93, 114, 118, 122, 133, 144, 149, 155, 170, 180 |
| abstract_inverted_index.two | 37, 87, 171 |
| abstract_inverted_index.(CC) | 17 |
| abstract_inverted_index.deep | 82 |
| abstract_inverted_index.each | 165 |
| abstract_inverted_index.fact | 150 |
| abstract_inverted_index.from | 35 |
| abstract_inverted_index.loss | 128 |
| abstract_inverted_index.maps | 84 |
| abstract_inverted_index.not. | 205 |
| abstract_inverted_index.same | 156 |
| abstract_inverted_index.that | 151, 179 |
| abstract_inverted_index.this | 57 |
| abstract_inverted_index.thus | 160, 192 |
| abstract_inverted_index.well | 183 |
| abstract_inverted_index.with | 140, 164 |
| abstract_inverted_index.chest | 145 |
| abstract_inverted_index.equal | 141 |
| abstract_inverted_index.form, | 14 |
| abstract_inverted_index.i.e., | 15, 174 |
| abstract_inverted_index.image | 1 |
| abstract_inverted_index.learn | 33 |
| abstract_inverted_index.local | 104 |
| abstract_inverted_index.their | 152 |
| abstract_inverted_index.them. | 97 |
| abstract_inverted_index.views | 38, 120 |
| abstract_inverted_index.wall, | 146 |
| abstract_inverted_index.which | 40 |
| abstract_inverted_index.whole | 200 |
| abstract_inverted_index.(MLO), | 21 |
| abstract_inverted_index.across | 189 |
| abstract_inverted_index.breast | 5, 157 |
| abstract_inverted_index.cancer | 6 |
| abstract_inverted_index.hybrid | 64, 99 |
| abstract_inverted_index.mostly | 32 |
| abstract_inverted_index.other. | 166 |
| abstract_inverted_index.paired | 119 |
| abstract_inverted_index.paper, | 58 |
| abstract_inverted_index.public | 172 |
| abstract_inverted_index.robust | 69 |
| abstract_inverted_index.should | 161 |
| abstract_inverted_index.views, | 88, 190 |
| abstract_inverted_index.between | 96, 136 |
| abstract_inverted_index.blocks, | 109 |
| abstract_inverted_index.extract | 79 |
| abstract_inverted_index.feature | 54, 83, 134, 187 |
| abstract_inverted_index.ignores | 46 |
| abstract_inverted_index.methods | 31, 196 |
| abstract_inverted_index.module, | 101 |
| abstract_inverted_index.network | 66 |
| abstract_inverted_index.oblique | 20 |
| abstract_inverted_index.propose | 60 |
| abstract_inverted_index.provide | 23 |
| abstract_inverted_index.regions | 139 |
| abstract_inverted_index.results | 168 |
| abstract_inverted_index.spatial | 115 |
| abstract_inverted_index.DCHA-Net | 74, 181 |
| abstract_inverted_index.However, | 29 |
| abstract_inverted_index.INbreast | 175 |
| abstract_inverted_index.clinical | 27, 43 |
| abstract_inverted_index.designed | 77 |
| abstract_inverted_index.distance | 142 |
| abstract_inverted_index.features | 34, 153 |
| abstract_inverted_index.holistic | 70 |
| abstract_inverted_index.maximize | 92, 132, 186 |
| abstract_inverted_index.obtained | 10 |
| abstract_inverted_index.preserve | 184 |
| abstract_inverted_index.previous | 30, 194 |
| abstract_inverted_index.proposed | 111 |
| abstract_inverted_index.reinvent | 81 |
| abstract_inverted_index.relation | 105 |
| abstract_inverted_index.tissues, | 158 |
| abstract_inverted_index.violates | 41 |
| abstract_inverted_index.Mammogram | 0 |
| abstract_inverted_index.alleviate | 113 |
| abstract_inverted_index.attention | 65, 100, 108 |
| abstract_inverted_index.carefully | 76 |
| abstract_inverted_index.datasets, | 173 |
| abstract_inverted_index.dual-view | 13, 50, 62, 126 |
| abstract_inverted_index.important | 3 |
| abstract_inverted_index.knowledge | 44 |
| abstract_inverted_index.learning. | 55 |
| abstract_inverted_index.malignant | 203 |
| abstract_inverted_index.mammogram | 71, 201 |
| abstract_inverted_index.meanwhile | 90 |
| abstract_inverted_index.motivated | 147 |
| abstract_inverted_index.non-local | 107 |
| abstract_inverted_index.represent | 154 |
| abstract_inverted_index.typically | 9 |
| abstract_inverted_index.(DCHA-Net) | 67 |
| abstract_inverted_index.CBIS-DDSM, | 177 |
| abstract_inverted_index.consisting | 102 |
| abstract_inverted_index.decisions. | 28 |
| abstract_inverted_index.importance | 48 |
| abstract_inverted_index.introduced | 130 |
| abstract_inverted_index.screening, | 7 |
| abstract_inverted_index.similarity | 135 |
| abstract_inverted_index.strip-like | 138 |
| abstract_inverted_index.underlying | 94 |
| abstract_inverted_index.classifying | 198 |
| abstract_inverted_index.correlation | 51, 63, 123, 127 |
| abstract_inverted_index.demonstrate | 178 |
| abstract_inverted_index.information | 25 |
| abstract_inverted_index.outperforms | 193 |
| abstract_inverted_index.Experimental | 167 |
| abstract_inverted_index.correlations | 95, 188 |
| abstract_inverted_index.mediolateral | 19 |
| abstract_inverted_index.misalignment | 116 |
| abstract_inverted_index.Specifically, | 73 |
| abstract_inverted_index.complementary | 24 |
| abstract_inverted_index.corresponding | 137 |
| abstract_inverted_index.cranio-caudal | 16 |
| abstract_inverted_index.maximization. | 124 |
| abstract_inverted_index.independently, | 39 |
| abstract_inverted_index.classification. | 72 |
| abstract_inverted_index.state-of-the-art | 195 |
| abstract_inverted_index.highly-correlated | 163 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.75 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.73725058 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |