DuDGAN: Improving Class-Conditional GANs via Dual-Diffusion Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2305.14849
Class-conditional image generation using generative adversarial networks (GANs) has been investigated through various techniques; however, it continues to face challenges such as mode collapse, training instability, and low-quality output in cases of datasets with high intra-class variation. Furthermore, most GANs often converge in larger iterations, resulting in poor iteration efficacy in training procedures. While Diffusion-GAN has shown potential in generating realistic samples, it has a critical limitation in generating class-conditional samples. To overcome these limitations, we propose a novel approach for class-conditional image generation using GANs called DuDGAN, which incorporates a dual diffusion-based noise injection process. Our method consists of three unique networks: a discriminator, a generator, and a classifier. During the training process, Gaussian-mixture noises are injected into the two noise-aware networks, the discriminator and the classifier, in distinct ways. This noisy data helps to prevent overfitting by gradually introducing more challenging tasks, leading to improved model performance. As a result, our method outperforms state-of-the-art conditional GAN models for image generation in terms of performance. We evaluated our method using the AFHQ, Food-101, and CIFAR-10 datasets and observed superior results across metrics such as FID, KID, Precision, and Recall score compared with comparison models, highlighting the effectiveness of our approach.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2305.14849
- https://arxiv.org/pdf/2305.14849
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4378474092
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4378474092Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2305.14849Digital Object Identifier
- Title
-
DuDGAN: Improving Class-Conditional GANs via Dual-DiffusionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-05-24Full publication date if available
- Authors
-
Taesun Yeom, Minhyeok LeeList of authors in order
- Landing page
-
https://arxiv.org/abs/2305.14849Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2305.14849Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2305.14849Direct OA link when available
- Concepts
-
Discriminator, Computer science, Overfitting, Classifier (UML), Artificial intelligence, Pattern recognition (psychology), Machine learning, Algorithm, Artificial neural network, Telecommunications, DetectorTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4378474092 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2305.14849 |
| ids.doi | https://doi.org/10.48550/arxiv.2305.14849 |
| ids.openalex | https://openalex.org/W4378474092 |
| fwci | |
| type | preprint |
| title | DuDGAN: Improving Class-Conditional GANs via Dual-Diffusion |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10775 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9954000115394592 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Generative Adversarial Networks and Image Synthesis |
| topics[1].id | https://openalex.org/T13114 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9884999990463257 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Image Processing Techniques and Applications |
| topics[2].id | https://openalex.org/T12357 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9732999801635742 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Digital Media Forensic Detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2779803651 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8249996900558472 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5282088 |
| concepts[0].display_name | Discriminator |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7676336765289307 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C22019652 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5946117043495178 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q331309 |
| concepts[2].display_name | Overfitting |
| concepts[3].id | https://openalex.org/C95623464 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5623783469200134 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[3].display_name | Classifier (UML) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5320891737937927 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.45795831084251404 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.39463967084884644 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C11413529 |
| concepts[7].level | 1 |
| concepts[7].score | 0.37187525629997253 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[7].display_name | Algorithm |
| concepts[8].id | https://openalex.org/C50644808 |
| concepts[8].level | 2 |
| concepts[8].score | 0.2324899435043335 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[8].display_name | Artificial neural network |
| concepts[9].id | https://openalex.org/C76155785 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[9].display_name | Telecommunications |
| concepts[10].id | https://openalex.org/C94915269 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1834857 |
| concepts[10].display_name | Detector |
| keywords[0].id | https://openalex.org/keywords/discriminator |
| keywords[0].score | 0.8249996900558472 |
| keywords[0].display_name | Discriminator |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7676336765289307 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/overfitting |
| keywords[2].score | 0.5946117043495178 |
| keywords[2].display_name | Overfitting |
| keywords[3].id | https://openalex.org/keywords/classifier |
| keywords[3].score | 0.5623783469200134 |
| keywords[3].display_name | Classifier (UML) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5320891737937927 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.45795831084251404 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.39463967084884644 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/algorithm |
| keywords[7].score | 0.37187525629997253 |
| keywords[7].display_name | Algorithm |
| keywords[8].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[8].score | 0.2324899435043335 |
| keywords[8].display_name | Artificial neural network |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2305.14849 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2305.14849 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2305.14849 |
| locations[1].id | doi:10.48550/arxiv.2305.14849 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2305.14849 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5085204347 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4947-762X |
| authorships[0].author.display_name | Taesun Yeom |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yeom, Taesun |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101544150 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2562-172X |
| authorships[1].author.display_name | Minhyeok Lee |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Lee, Minhyeok |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2305.14849 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | DuDGAN: Improving Class-Conditional GANs via Dual-Diffusion |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10775 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9954000115394592 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Generative Adversarial Networks and Image Synthesis |
| related_works | https://openalex.org/W4362597605, https://openalex.org/W3200695403, https://openalex.org/W4288087796, https://openalex.org/W2982339091, https://openalex.org/W2989932438, https://openalex.org/W4387297750, https://openalex.org/W2596763562, https://openalex.org/W2191179271, https://openalex.org/W2964218010, https://openalex.org/W2186333919 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2305.14849 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2305.14849 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2305.14849 |
| primary_location.id | pmh:oai:arXiv.org:2305.14849 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2305.14849 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2305.14849 |
| publication_date | 2023-05-24 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 64, 77, 90, 103, 105, 108, 150 |
| abstract_inverted_index.As | 149 |
| abstract_inverted_index.To | 71 |
| abstract_inverted_index.We | 166 |
| abstract_inverted_index.as | 21, 184 |
| abstract_inverted_index.by | 138 |
| abstract_inverted_index.in | 29, 42, 46, 50, 58, 67, 128, 162 |
| abstract_inverted_index.it | 15, 62 |
| abstract_inverted_index.of | 31, 99, 164, 198 |
| abstract_inverted_index.to | 17, 135, 145 |
| abstract_inverted_index.we | 75 |
| abstract_inverted_index.GAN | 157 |
| abstract_inverted_index.Our | 96 |
| abstract_inverted_index.and | 26, 107, 125, 174, 177, 188 |
| abstract_inverted_index.are | 116 |
| abstract_inverted_index.for | 80, 159 |
| abstract_inverted_index.has | 8, 55, 63 |
| abstract_inverted_index.our | 152, 168, 199 |
| abstract_inverted_index.the | 111, 119, 123, 126, 171, 196 |
| abstract_inverted_index.two | 120 |
| abstract_inverted_index.FID, | 185 |
| abstract_inverted_index.GANs | 39, 85 |
| abstract_inverted_index.KID, | 186 |
| abstract_inverted_index.This | 131 |
| abstract_inverted_index.been | 9 |
| abstract_inverted_index.data | 133 |
| abstract_inverted_index.dual | 91 |
| abstract_inverted_index.face | 18 |
| abstract_inverted_index.high | 34 |
| abstract_inverted_index.into | 118 |
| abstract_inverted_index.mode | 22 |
| abstract_inverted_index.more | 141 |
| abstract_inverted_index.most | 38 |
| abstract_inverted_index.poor | 47 |
| abstract_inverted_index.such | 20, 183 |
| abstract_inverted_index.with | 33, 192 |
| abstract_inverted_index.AFHQ, | 172 |
| abstract_inverted_index.While | 53 |
| abstract_inverted_index.cases | 30 |
| abstract_inverted_index.helps | 134 |
| abstract_inverted_index.image | 1, 82, 160 |
| abstract_inverted_index.model | 147 |
| abstract_inverted_index.noise | 93 |
| abstract_inverted_index.noisy | 132 |
| abstract_inverted_index.novel | 78 |
| abstract_inverted_index.often | 40 |
| abstract_inverted_index.score | 190 |
| abstract_inverted_index.shown | 56 |
| abstract_inverted_index.terms | 163 |
| abstract_inverted_index.these | 73 |
| abstract_inverted_index.three | 100 |
| abstract_inverted_index.using | 3, 84, 170 |
| abstract_inverted_index.ways. | 130 |
| abstract_inverted_index.which | 88 |
| abstract_inverted_index.(GANs) | 7 |
| abstract_inverted_index.During | 110 |
| abstract_inverted_index.Recall | 189 |
| abstract_inverted_index.across | 181 |
| abstract_inverted_index.called | 86 |
| abstract_inverted_index.larger | 43 |
| abstract_inverted_index.method | 97, 153, 169 |
| abstract_inverted_index.models | 158 |
| abstract_inverted_index.noises | 115 |
| abstract_inverted_index.output | 28 |
| abstract_inverted_index.tasks, | 143 |
| abstract_inverted_index.unique | 101 |
| abstract_inverted_index.DuDGAN, | 87 |
| abstract_inverted_index.leading | 144 |
| abstract_inverted_index.metrics | 182 |
| abstract_inverted_index.models, | 194 |
| abstract_inverted_index.prevent | 136 |
| abstract_inverted_index.propose | 76 |
| abstract_inverted_index.result, | 151 |
| abstract_inverted_index.results | 180 |
| abstract_inverted_index.through | 11 |
| abstract_inverted_index.various | 12 |
| abstract_inverted_index.CIFAR-10 | 175 |
| abstract_inverted_index.approach | 79 |
| abstract_inverted_index.compared | 191 |
| abstract_inverted_index.consists | 98 |
| abstract_inverted_index.converge | 41 |
| abstract_inverted_index.critical | 65 |
| abstract_inverted_index.datasets | 32, 176 |
| abstract_inverted_index.distinct | 129 |
| abstract_inverted_index.efficacy | 49 |
| abstract_inverted_index.however, | 14 |
| abstract_inverted_index.improved | 146 |
| abstract_inverted_index.injected | 117 |
| abstract_inverted_index.networks | 6 |
| abstract_inverted_index.observed | 178 |
| abstract_inverted_index.overcome | 72 |
| abstract_inverted_index.process, | 113 |
| abstract_inverted_index.process. | 95 |
| abstract_inverted_index.samples, | 61 |
| abstract_inverted_index.samples. | 70 |
| abstract_inverted_index.superior | 179 |
| abstract_inverted_index.training | 24, 51, 112 |
| abstract_inverted_index.Food-101, | 173 |
| abstract_inverted_index.approach. | 200 |
| abstract_inverted_index.collapse, | 23 |
| abstract_inverted_index.continues | 16 |
| abstract_inverted_index.evaluated | 167 |
| abstract_inverted_index.gradually | 139 |
| abstract_inverted_index.injection | 94 |
| abstract_inverted_index.iteration | 48 |
| abstract_inverted_index.networks, | 122 |
| abstract_inverted_index.networks: | 102 |
| abstract_inverted_index.potential | 57 |
| abstract_inverted_index.realistic | 60 |
| abstract_inverted_index.resulting | 45 |
| abstract_inverted_index.Precision, | 187 |
| abstract_inverted_index.challenges | 19 |
| abstract_inverted_index.comparison | 193 |
| abstract_inverted_index.generating | 59, 68 |
| abstract_inverted_index.generation | 2, 83, 161 |
| abstract_inverted_index.generative | 4 |
| abstract_inverted_index.generator, | 106 |
| abstract_inverted_index.limitation | 66 |
| abstract_inverted_index.variation. | 36 |
| abstract_inverted_index.adversarial | 5 |
| abstract_inverted_index.challenging | 142 |
| abstract_inverted_index.classifier, | 127 |
| abstract_inverted_index.classifier. | 109 |
| abstract_inverted_index.conditional | 156 |
| abstract_inverted_index.intra-class | 35 |
| abstract_inverted_index.introducing | 140 |
| abstract_inverted_index.iterations, | 44 |
| abstract_inverted_index.low-quality | 27 |
| abstract_inverted_index.noise-aware | 121 |
| abstract_inverted_index.outperforms | 154 |
| abstract_inverted_index.overfitting | 137 |
| abstract_inverted_index.procedures. | 52 |
| abstract_inverted_index.techniques; | 13 |
| abstract_inverted_index.Furthermore, | 37 |
| abstract_inverted_index.highlighting | 195 |
| abstract_inverted_index.incorporates | 89 |
| abstract_inverted_index.instability, | 25 |
| abstract_inverted_index.investigated | 10 |
| abstract_inverted_index.limitations, | 74 |
| abstract_inverted_index.performance. | 148, 165 |
| abstract_inverted_index.Diffusion-GAN | 54 |
| abstract_inverted_index.discriminator | 124 |
| abstract_inverted_index.effectiveness | 197 |
| abstract_inverted_index.discriminator, | 104 |
| abstract_inverted_index.diffusion-based | 92 |
| abstract_inverted_index.Gaussian-mixture | 114 |
| abstract_inverted_index.state-of-the-art | 155 |
| abstract_inverted_index.Class-conditional | 0 |
| abstract_inverted_index.class-conditional | 69, 81 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.5 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile |