DynaCat-Diffusion: Iterative Semantic Categorization for Open-World Language Generation Article Swipe
Recent work by Wang (2025) argues that “AI = Dynamic Categorization,” framing language modeling as the real-time construction of temporary semantic prototypes that guide token selection. The Transformer implements this via self-referential attention, where Value (V) vectors—crucially—encode response semantics (“what should be said next”) rather than input semantics. However, this paradigm remains a one-step decision process, lacking the capacity for iterative refinement. In this paper, we propose DynaCat-Diffusion, a hybrid framework that unifies dynamic categorization with diffusion-inspired prototype refinement. Our core insight is that intelligent generation requires not only building a semantic prototype but also improving it through multi-step optimization. We present a minimal implementation where an initial goal-oriented prototype (from QKV attention) is refined in embedding space via a stable, interpolation-based diffusion process. Experiments confirm that this approach preserves coherence in high-certainty contexts while enabling natural diversity in ambiguous ones (e.g., “bye” → “see” or “later”). We argue that iterative semantic categorization represents a necessary evolution toward robust open-world intelligence.
Related Topics
- Type
- preprint
- Landing Page
- https://doi.org/10.5281/zenodo.17893915
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7114916646
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7114916646Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.17893915Digital Object Identifier
- Title
-
DynaCat-Diffusion: Iterative Semantic Categorization for Open-World Language GenerationWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-11Full publication date if available
- Authors
-
Wang, zhongrenList of authors in order
- Landing page
-
https://doi.org/10.5281/zenodo.17893915Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5281/zenodo.17893915Direct OA link when available
- Concepts
-
Computer science, Categorization, Artificial intelligence, Natural language processing, Natural language, Embedding, Semantics (computer science), Framing (construction), Coherence (philosophical gambling strategy), Natural language understanding, Semantic compression, Transformer, Natural language generation, Iterative and incremental development, Security token, Semantic computing, Semantic property, Annotation, Space (punctuation), Semantic similarity, Semantic data model, Language understanding, Semantic spaceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7114916646 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.17893915 |
| ids.doi | https://doi.org/10.5281/zenodo.17893915 |
| ids.openalex | https://openalex.org/W7114916646 |
| fwci | |
| type | preprint |
| title | DynaCat-Diffusion: Iterative Semantic Categorization for Open-World Language Generation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7580314874649048 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C94124525 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5677295923233032 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q912550 |
| concepts[1].display_name | Categorization |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5355773568153381 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C204321447 |
| concepts[3].level | 1 |
| concepts[3].score | 0.45083358883857727 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[3].display_name | Natural language processing |
| concepts[4].id | https://openalex.org/C195324797 |
| concepts[4].level | 2 |
| concepts[4].score | 0.428156316280365 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q33742 |
| concepts[4].display_name | Natural language |
| concepts[5].id | https://openalex.org/C41608201 |
| concepts[5].level | 2 |
| concepts[5].score | 0.42630860209465027 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[5].display_name | Embedding |
| concepts[6].id | https://openalex.org/C184337299 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4216711223125458 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1437428 |
| concepts[6].display_name | Semantics (computer science) |
| concepts[7].id | https://openalex.org/C169087156 |
| concepts[7].level | 2 |
| concepts[7].score | 0.39621102809906006 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2131593 |
| concepts[7].display_name | Framing (construction) |
| concepts[8].id | https://openalex.org/C2781181686 |
| concepts[8].level | 2 |
| concepts[8].score | 0.35072728991508484 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q4226068 |
| concepts[8].display_name | Coherence (philosophical gambling strategy) |
| concepts[9].id | https://openalex.org/C2779439875 |
| concepts[9].level | 3 |
| concepts[9].score | 0.3327054977416992 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1078276 |
| concepts[9].display_name | Natural language understanding |
| concepts[10].id | https://openalex.org/C202708506 |
| concepts[10].level | 5 |
| concepts[10].score | 0.3162776529788971 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7449050 |
| concepts[10].display_name | Semantic compression |
| concepts[11].id | https://openalex.org/C66322947 |
| concepts[11].level | 3 |
| concepts[11].score | 0.3149885833263397 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[11].display_name | Transformer |
| concepts[12].id | https://openalex.org/C2776187449 |
| concepts[12].level | 3 |
| concepts[12].score | 0.3029071092605591 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1513879 |
| concepts[12].display_name | Natural language generation |
| concepts[13].id | https://openalex.org/C143587482 |
| concepts[13].level | 2 |
| concepts[13].score | 0.29002058506011963 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1543216 |
| concepts[13].display_name | Iterative and incremental development |
| concepts[14].id | https://openalex.org/C48145219 |
| concepts[14].level | 2 |
| concepts[14].score | 0.2773532271385193 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1335365 |
| concepts[14].display_name | Security token |
| concepts[15].id | https://openalex.org/C511149849 |
| concepts[15].level | 3 |
| concepts[15].score | 0.27128174901008606 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7449051 |
| concepts[15].display_name | Semantic computing |
| concepts[16].id | https://openalex.org/C198942812 |
| concepts[16].level | 2 |
| concepts[16].score | 0.26538321375846863 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q496618 |
| concepts[16].display_name | Semantic property |
| concepts[17].id | https://openalex.org/C2776321320 |
| concepts[17].level | 2 |
| concepts[17].score | 0.25995105504989624 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q857525 |
| concepts[17].display_name | Annotation |
| concepts[18].id | https://openalex.org/C2778572836 |
| concepts[18].level | 2 |
| concepts[18].score | 0.25957027077674866 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q380933 |
| concepts[18].display_name | Space (punctuation) |
| concepts[19].id | https://openalex.org/C130318100 |
| concepts[19].level | 2 |
| concepts[19].score | 0.25941550731658936 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q2268914 |
| concepts[19].display_name | Semantic similarity |
| concepts[20].id | https://openalex.org/C90312973 |
| concepts[20].level | 2 |
| concepts[20].score | 0.2583146393299103 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q7449052 |
| concepts[20].display_name | Semantic data model |
| concepts[21].id | https://openalex.org/C2983448237 |
| concepts[21].level | 2 |
| concepts[21].score | 0.2573557496070862 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q1078276 |
| concepts[21].display_name | Language understanding |
| concepts[22].id | https://openalex.org/C2986420190 |
| concepts[22].level | 2 |
| concepts[22].score | 0.25075504183769226 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q39045939 |
| concepts[22].display_name | Semantic space |
| keywords[0].id | https://openalex.org/keywords/categorization |
| keywords[0].score | 0.5677295923233032 |
| keywords[0].display_name | Categorization |
| keywords[1].id | https://openalex.org/keywords/natural-language |
| keywords[1].score | 0.428156316280365 |
| keywords[1].display_name | Natural language |
| keywords[2].id | https://openalex.org/keywords/embedding |
| keywords[2].score | 0.42630860209465027 |
| keywords[2].display_name | Embedding |
| keywords[3].id | https://openalex.org/keywords/semantics |
| keywords[3].score | 0.4216711223125458 |
| keywords[3].display_name | Semantics (computer science) |
| keywords[4].id | https://openalex.org/keywords/framing |
| keywords[4].score | 0.39621102809906006 |
| keywords[4].display_name | Framing (construction) |
| keywords[5].id | https://openalex.org/keywords/coherence |
| keywords[5].score | 0.35072728991508484 |
| keywords[5].display_name | Coherence (philosophical gambling strategy) |
| keywords[6].id | https://openalex.org/keywords/natural-language-understanding |
| keywords[6].score | 0.3327054977416992 |
| keywords[6].display_name | Natural language understanding |
| keywords[7].id | https://openalex.org/keywords/semantic-compression |
| keywords[7].score | 0.3162776529788971 |
| keywords[7].display_name | Semantic compression |
| language | |
| locations[0].id | doi:10.5281/zenodo.17893915 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5281/zenodo.17893915 |
| indexed_in | datacite |
| authorships[0].author.id | |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Wang, zhongren |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wang, zhongren |
| authorships[0].is_corresponding | True |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5281/zenodo.17893915 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-12T00:00:00 |
| display_name | DynaCat-Diffusion: Iterative Semantic Categorization for Open-World Language Generation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-12T23:20:42.204495 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5281/zenodo.17893915 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5281/zenodo.17893915 |
| primary_location.id | doi:10.5281/zenodo.17893915 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5281/zenodo.17893915 |
| publication_date | 2025-12-11 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.= | 8 |
| abstract_inverted_index.a | 52, 68, 90, 102, 119, 154 |
| abstract_inverted_index.In | 62 |
| abstract_inverted_index.We | 100, 147 |
| abstract_inverted_index.an | 106 |
| abstract_inverted_index.as | 14 |
| abstract_inverted_index.be | 41 |
| abstract_inverted_index.by | 2 |
| abstract_inverted_index.in | 115, 131, 138 |
| abstract_inverted_index.is | 82, 113 |
| abstract_inverted_index.it | 96 |
| abstract_inverted_index.of | 18 |
| abstract_inverted_index.or | 145 |
| abstract_inverted_index.we | 65 |
| abstract_inverted_index.(V) | 35 |
| abstract_inverted_index.Our | 79 |
| abstract_inverted_index.QKV | 111 |
| abstract_inverted_index.The | 26 |
| abstract_inverted_index.but | 93 |
| abstract_inverted_index.for | 59 |
| abstract_inverted_index.not | 87 |
| abstract_inverted_index.the | 15, 57 |
| abstract_inverted_index.via | 30, 118 |
| abstract_inverted_index.→ | 143 |
| abstract_inverted_index.Wang | 3 |
| abstract_inverted_index.also | 94 |
| abstract_inverted_index.core | 80 |
| abstract_inverted_index.ones | 140 |
| abstract_inverted_index.only | 88 |
| abstract_inverted_index.said | 42 |
| abstract_inverted_index.than | 45 |
| abstract_inverted_index.that | 6, 22, 71, 83, 126, 149 |
| abstract_inverted_index.this | 29, 49, 63, 127 |
| abstract_inverted_index.with | 75 |
| abstract_inverted_index.work | 1 |
| abstract_inverted_index.(from | 110 |
| abstract_inverted_index.Value | 34 |
| abstract_inverted_index.argue | 148 |
| abstract_inverted_index.guide | 23 |
| abstract_inverted_index.input | 46 |
| abstract_inverted_index.space | 117 |
| abstract_inverted_index.token | 24 |
| abstract_inverted_index.where | 33, 105 |
| abstract_inverted_index.while | 134 |
| abstract_inverted_index.“AI | 7 |
| abstract_inverted_index.(2025) | 4 |
| abstract_inverted_index.(e.g., | 141 |
| abstract_inverted_index.Recent | 0 |
| abstract_inverted_index.argues | 5 |
| abstract_inverted_index.hybrid | 69 |
| abstract_inverted_index.paper, | 64 |
| abstract_inverted_index.rather | 44 |
| abstract_inverted_index.robust | 158 |
| abstract_inverted_index.should | 40 |
| abstract_inverted_index.toward | 157 |
| abstract_inverted_index.Dynamic | 9 |
| abstract_inverted_index.confirm | 125 |
| abstract_inverted_index.dynamic | 73 |
| abstract_inverted_index.framing | 11 |
| abstract_inverted_index.initial | 107 |
| abstract_inverted_index.insight | 81 |
| abstract_inverted_index.lacking | 56 |
| abstract_inverted_index.minimal | 103 |
| abstract_inverted_index.natural | 136 |
| abstract_inverted_index.present | 101 |
| abstract_inverted_index.propose | 66 |
| abstract_inverted_index.refined | 114 |
| abstract_inverted_index.remains | 51 |
| abstract_inverted_index.stable, | 120 |
| abstract_inverted_index.through | 97 |
| abstract_inverted_index.unifies | 72 |
| abstract_inverted_index.(“what | 39 |
| abstract_inverted_index.However, | 48 |
| abstract_inverted_index.approach | 128 |
| abstract_inverted_index.building | 89 |
| abstract_inverted_index.capacity | 58 |
| abstract_inverted_index.contexts | 133 |
| abstract_inverted_index.decision | 54 |
| abstract_inverted_index.enabling | 135 |
| abstract_inverted_index.language | 12 |
| abstract_inverted_index.modeling | 13 |
| abstract_inverted_index.next”) | 43 |
| abstract_inverted_index.one-step | 53 |
| abstract_inverted_index.paradigm | 50 |
| abstract_inverted_index.process, | 55 |
| abstract_inverted_index.process. | 123 |
| abstract_inverted_index.requires | 86 |
| abstract_inverted_index.response | 37 |
| abstract_inverted_index.semantic | 20, 91, 151 |
| abstract_inverted_index.ambiguous | 139 |
| abstract_inverted_index.coherence | 130 |
| abstract_inverted_index.diffusion | 122 |
| abstract_inverted_index.diversity | 137 |
| abstract_inverted_index.embedding | 116 |
| abstract_inverted_index.evolution | 156 |
| abstract_inverted_index.framework | 70 |
| abstract_inverted_index.improving | 95 |
| abstract_inverted_index.iterative | 60, 150 |
| abstract_inverted_index.necessary | 155 |
| abstract_inverted_index.preserves | 129 |
| abstract_inverted_index.prototype | 77, 92, 109 |
| abstract_inverted_index.real-time | 16 |
| abstract_inverted_index.semantics | 38 |
| abstract_inverted_index.temporary | 19 |
| abstract_inverted_index.“bye” | 142 |
| abstract_inverted_index.“see” | 144 |
| abstract_inverted_index.attention) | 112 |
| abstract_inverted_index.attention, | 32 |
| abstract_inverted_index.generation | 85 |
| abstract_inverted_index.implements | 28 |
| abstract_inverted_index.multi-step | 98 |
| abstract_inverted_index.open-world | 159 |
| abstract_inverted_index.prototypes | 21 |
| abstract_inverted_index.represents | 153 |
| abstract_inverted_index.selection. | 25 |
| abstract_inverted_index.semantics. | 47 |
| abstract_inverted_index.Experiments | 124 |
| abstract_inverted_index.Transformer | 27 |
| abstract_inverted_index.intelligent | 84 |
| abstract_inverted_index.refinement. | 61, 78 |
| abstract_inverted_index.construction | 17 |
| abstract_inverted_index.goal-oriented | 108 |
| abstract_inverted_index.intelligence. | 160 |
| abstract_inverted_index.optimization. | 99 |
| abstract_inverted_index.“later”). | 146 |
| abstract_inverted_index.categorization | 74, 152 |
| abstract_inverted_index.high-certainty | 132 |
| abstract_inverted_index.implementation | 104 |
| abstract_inverted_index.self-referential | 31 |
| abstract_inverted_index.Categorization,” | 10 |
| abstract_inverted_index.DynaCat-Diffusion, | 67 |
| abstract_inverted_index.diffusion-inspired | 76 |
| abstract_inverted_index.interpolation-based | 121 |
| abstract_inverted_index.vectors—crucially—encode | 36 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile |