Dynamic Correction of Forest Fire Spread Prediction using Observation Error Covariance Matrix Estimation Technique based on FLC-GRU Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-3972535/v1
Background Data assimilation (DA) techniques have played a significant role in improving the prediction accuracy of forest fire spread. This dynamic correction technique enhances the analytical values that better reflect the fire situation by weighting the predicted values and observed values. The weighted importance of each contribution is determined by the magnitude of its associated error. However, as a crucial parameter affecting prediction accuracy, the covariance matrix of observation errors is often inaccurate and neglects its own temporal correlation. This is unfriendly to spread prediction results. To address this issue, we proposed a targeted technique for estimating the observation error covariance matrix (R matrix) based on the Fire Line Convolutional Gated Recurrent Unit (FLC-GRU). Results We integrated this method into the DA framework and validated its applicability and accuracy using Observing System Simulation Experiment (OSSE). Through comparisons with traditional methods, the results indicate that using the FLC-GRU estimated R matrix for correction calculations leads to wildfire prediction locations that are closer to the true values. Conclusion s The proposed approach learns the covariance matrix directly from time-series observed fire line data, without requiring any prior knowledge or assumptions about the error distribution, in contrast to classical posterior tuning methods. The proposed method significantly improves the rationality and accuracy of R matrix estimation, enhances the utility of observational data, and thereby improves the correction accuracy of forest fire spread predictions. Moreover, the study also demonstrates the applicability of the proposed method within the DA framework.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-3972535/v1
- https://www.researchsquare.com/article/rs-3972535/latest.pdf
- OA Status
- green
- References
- 22
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392448620
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392448620Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-3972535/v1Digital Object Identifier
- Title
-
Dynamic Correction of Forest Fire Spread Prediction using Observation Error Covariance Matrix Estimation Technique based on FLC-GRUWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-05Full publication date if available
- Authors
-
Tianyu Wu, Qixing Zhang, Jiping Zhu, Jinhong Wu, Jinyang Dai, Yongming ZhangList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-3972535/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-3972535/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-3972535/latest.pdfDirect OA link when available
- Concepts
-
Covariance matrix, Matrix (chemical analysis), Estimation, Environmental science, Algorithm, Computer science, Mathematics, Forestry, Geography, Engineering, Materials science, Composite material, Systems engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
22Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392448620 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-3972535/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-3972535/v1 |
| ids.openalex | https://openalex.org/W4392448620 |
| fwci | 0.0 |
| type | preprint |
| title | Dynamic Correction of Forest Fire Spread Prediction using Observation Error Covariance Matrix Estimation Technique based on FLC-GRU |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10555 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9962999820709229 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2306 |
| topics[0].subfield.display_name | Global and Planetary Change |
| topics[0].display_name | Fire effects on ecosystems |
| topics[1].id | https://openalex.org/T12597 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9934999942779541 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2213 |
| topics[1].subfield.display_name | Safety, Risk, Reliability and Quality |
| topics[1].display_name | Fire Detection and Safety Systems |
| topics[2].id | https://openalex.org/T13832 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9843000173568726 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1710 |
| topics[2].subfield.display_name | Information Systems |
| topics[2].display_name | Advanced Decision-Making Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C185142706 |
| concepts[0].level | 2 |
| concepts[0].score | 0.4659932851791382 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1134404 |
| concepts[0].display_name | Covariance matrix |
| concepts[1].id | https://openalex.org/C106487976 |
| concepts[1].level | 2 |
| concepts[1].score | 0.4645286500453949 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q685816 |
| concepts[1].display_name | Matrix (chemical analysis) |
| concepts[2].id | https://openalex.org/C96250715 |
| concepts[2].level | 2 |
| concepts[2].score | 0.42348551750183105 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q965330 |
| concepts[2].display_name | Estimation |
| concepts[3].id | https://openalex.org/C39432304 |
| concepts[3].level | 0 |
| concepts[3].score | 0.38379985094070435 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[3].display_name | Environmental science |
| concepts[4].id | https://openalex.org/C11413529 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3723616600036621 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[4].display_name | Algorithm |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.3578401207923889 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3331681489944458 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C97137747 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3205653429031372 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q38112 |
| concepts[7].display_name | Forestry |
| concepts[8].id | https://openalex.org/C205649164 |
| concepts[8].level | 0 |
| concepts[8].score | 0.2811160683631897 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[8].display_name | Geography |
| concepts[9].id | https://openalex.org/C127413603 |
| concepts[9].level | 0 |
| concepts[9].score | 0.18281814455986023 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[9].display_name | Engineering |
| concepts[10].id | https://openalex.org/C192562407 |
| concepts[10].level | 0 |
| concepts[10].score | 0.08014377951622009 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[10].display_name | Materials science |
| concepts[11].id | https://openalex.org/C159985019 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[11].display_name | Composite material |
| concepts[12].id | https://openalex.org/C201995342 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[12].display_name | Systems engineering |
| keywords[0].id | https://openalex.org/keywords/covariance-matrix |
| keywords[0].score | 0.4659932851791382 |
| keywords[0].display_name | Covariance matrix |
| keywords[1].id | https://openalex.org/keywords/matrix |
| keywords[1].score | 0.4645286500453949 |
| keywords[1].display_name | Matrix (chemical analysis) |
| keywords[2].id | https://openalex.org/keywords/estimation |
| keywords[2].score | 0.42348551750183105 |
| keywords[2].display_name | Estimation |
| keywords[3].id | https://openalex.org/keywords/environmental-science |
| keywords[3].score | 0.38379985094070435 |
| keywords[3].display_name | Environmental science |
| keywords[4].id | https://openalex.org/keywords/algorithm |
| keywords[4].score | 0.3723616600036621 |
| keywords[4].display_name | Algorithm |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.3578401207923889 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.3331681489944458 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/forestry |
| keywords[7].score | 0.3205653429031372 |
| keywords[7].display_name | Forestry |
| keywords[8].id | https://openalex.org/keywords/geography |
| keywords[8].score | 0.2811160683631897 |
| keywords[8].display_name | Geography |
| keywords[9].id | https://openalex.org/keywords/engineering |
| keywords[9].score | 0.18281814455986023 |
| keywords[9].display_name | Engineering |
| keywords[10].id | https://openalex.org/keywords/materials-science |
| keywords[10].score | 0.08014377951622009 |
| keywords[10].display_name | Materials science |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-3972535/v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402450 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Research Square (Research Square) |
| locations[0].source.host_organization | https://openalex.org/I4210096694 |
| locations[0].source.host_organization_name | Research Square (United States) |
| locations[0].source.host_organization_lineage | https://openalex.org/I4210096694 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-3972535/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-3972535/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101941291 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3448-2995 |
| authorships[0].author.display_name | Tianyu Wu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I126520041 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Science and Technology of China |
| authorships[0].institutions[0].id | https://openalex.org/I126520041 |
| authorships[0].institutions[0].ror | https://ror.org/04c4dkn09 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I126520041, https://openalex.org/I19820366 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | University of Science and Technology of China |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tianyu Wu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Science and Technology of China |
| authorships[1].author.id | https://openalex.org/A5062142229 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8784-8674 |
| authorships[1].author.display_name | Qixing Zhang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I126520041 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Science and Technology of China |
| authorships[1].institutions[0].id | https://openalex.org/I126520041 |
| authorships[1].institutions[0].ror | https://ror.org/04c4dkn09 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I126520041, https://openalex.org/I19820366 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | University of Science and Technology of China |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | qixing zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Science and Technology of China |
| authorships[2].author.id | https://openalex.org/A5112319536 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7505-946X |
| authorships[2].author.display_name | Jiping Zhu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I126520041 |
| authorships[2].affiliations[0].raw_affiliation_string | University of Science and Technology of China |
| authorships[2].institutions[0].id | https://openalex.org/I126520041 |
| authorships[2].institutions[0].ror | https://ror.org/04c4dkn09 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I126520041, https://openalex.org/I19820366 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | University of Science and Technology of China |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jiping Zhu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of Science and Technology of China |
| authorships[3].author.id | https://openalex.org/A5030907120 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6735-3212 |
| authorships[3].author.display_name | Jinhong Wu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I126520041 |
| authorships[3].affiliations[0].raw_affiliation_string | University of Science and Technology of China |
| authorships[3].institutions[0].id | https://openalex.org/I126520041 |
| authorships[3].institutions[0].ror | https://ror.org/04c4dkn09 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I126520041, https://openalex.org/I19820366 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | University of Science and Technology of China |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jinhong Wu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | University of Science and Technology of China |
| authorships[4].author.id | https://openalex.org/A5028379605 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0078-2378 |
| authorships[4].author.display_name | Jinyang Dai |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I126520041 |
| authorships[4].affiliations[0].raw_affiliation_string | University of Science and Technology of China |
| authorships[4].institutions[0].id | https://openalex.org/I126520041 |
| authorships[4].institutions[0].ror | https://ror.org/04c4dkn09 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I126520041, https://openalex.org/I19820366 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | University of Science and Technology of China |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jinyang Dai |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | University of Science and Technology of China |
| authorships[5].author.id | https://openalex.org/A5100734706 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7312-2397 |
| authorships[5].author.display_name | Yongming Zhang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I126520041 |
| authorships[5].affiliations[0].raw_affiliation_string | University of Science and Technology of China |
| authorships[5].institutions[0].id | https://openalex.org/I126520041 |
| authorships[5].institutions[0].ror | https://ror.org/04c4dkn09 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I126520041, https://openalex.org/I19820366 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | University of Science and Technology of China |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Yongming Zhang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | University of Science and Technology of China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-3972535/latest.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Dynamic Correction of Forest Fire Spread Prediction using Observation Error Covariance Matrix Estimation Technique based on FLC-GRU |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10555 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9962999820709229 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2306 |
| primary_topic.subfield.display_name | Global and Planetary Change |
| primary_topic.display_name | Fire effects on ecosystems |
| related_works | https://openalex.org/W2051487156, https://openalex.org/W2073681303, https://openalex.org/W2053286651, https://openalex.org/W2181743346, https://openalex.org/W2187401768, https://openalex.org/W2181413294, https://openalex.org/W2052122378, https://openalex.org/W2544423928, https://openalex.org/W2576994247, https://openalex.org/W2062023542 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-3972535/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402450 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Research Square (Research Square) |
| best_oa_location.source.host_organization | https://openalex.org/I4210096694 |
| best_oa_location.source.host_organization_name | Research Square (United States) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-3972535/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-3972535/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-3972535/v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402450 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Research Square (Research Square) |
| primary_location.source.host_organization | https://openalex.org/I4210096694 |
| primary_location.source.host_organization_name | Research Square (United States) |
| primary_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-3972535/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-3972535/v1 |
| publication_date | 2024-03-05 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3211717525, https://openalex.org/W4378802379, https://openalex.org/W2157331557, https://openalex.org/W2166317254, https://openalex.org/W2149205139, https://openalex.org/W4205356104, https://openalex.org/W2163605009, https://openalex.org/W2123940107, https://openalex.org/W2919981789, https://openalex.org/W2105056323, https://openalex.org/W2047184191, https://openalex.org/W2158595370, https://openalex.org/W2122801340, https://openalex.org/W2162543653, https://openalex.org/W2009121338, https://openalex.org/W3080969264, https://openalex.org/W2150886027, https://openalex.org/W2891899905, https://openalex.org/W2917926088, https://openalex.org/W3037999318, https://openalex.org/W3046099625, https://openalex.org/W2618530766 |
| referenced_works_count | 22 |
| abstract_inverted_index.R | 149, 210 |
| abstract_inverted_index.a | 8, 59, 93 |
| abstract_inverted_index.s | 167 |
| abstract_inverted_index.(R | 103 |
| abstract_inverted_index.DA | 122, 243 |
| abstract_inverted_index.To | 87 |
| abstract_inverted_index.We | 116 |
| abstract_inverted_index.as | 58 |
| abstract_inverted_index.by | 34, 50 |
| abstract_inverted_index.in | 11, 193 |
| abstract_inverted_index.is | 48, 71, 81 |
| abstract_inverted_index.of | 16, 45, 53, 68, 209, 216, 225, 237 |
| abstract_inverted_index.on | 106 |
| abstract_inverted_index.or | 187 |
| abstract_inverted_index.to | 83, 155, 162, 195 |
| abstract_inverted_index.we | 91 |
| abstract_inverted_index.The | 42, 168, 200 |
| abstract_inverted_index.and | 39, 74, 124, 128, 207, 219 |
| abstract_inverted_index.any | 184 |
| abstract_inverted_index.are | 160 |
| abstract_inverted_index.for | 96, 151 |
| abstract_inverted_index.its | 54, 76, 126 |
| abstract_inverted_index.own | 77 |
| abstract_inverted_index.the | 13, 25, 31, 36, 51, 65, 98, 107, 121, 141, 146, 163, 172, 190, 205, 214, 222, 231, 235, 238, 242 |
| abstract_inverted_index.(DA) | 4 |
| abstract_inverted_index.Data | 2 |
| abstract_inverted_index.Fire | 108 |
| abstract_inverted_index.Line | 109 |
| abstract_inverted_index.This | 20, 80 |
| abstract_inverted_index.Unit | 113 |
| abstract_inverted_index.also | 233 |
| abstract_inverted_index.each | 46 |
| abstract_inverted_index.fire | 18, 32, 179, 227 |
| abstract_inverted_index.from | 176 |
| abstract_inverted_index.have | 6 |
| abstract_inverted_index.into | 120 |
| abstract_inverted_index.line | 180 |
| abstract_inverted_index.role | 10 |
| abstract_inverted_index.that | 28, 144, 159 |
| abstract_inverted_index.this | 89, 118 |
| abstract_inverted_index.true | 164 |
| abstract_inverted_index.with | 138 |
| abstract_inverted_index.Gated | 111 |
| abstract_inverted_index.about | 189 |
| abstract_inverted_index.based | 105 |
| abstract_inverted_index.data, | 181, 218 |
| abstract_inverted_index.error | 100, 191 |
| abstract_inverted_index.leads | 154 |
| abstract_inverted_index.often | 72 |
| abstract_inverted_index.prior | 185 |
| abstract_inverted_index.study | 232 |
| abstract_inverted_index.using | 130, 145 |
| abstract_inverted_index.System | 132 |
| abstract_inverted_index.better | 29 |
| abstract_inverted_index.closer | 161 |
| abstract_inverted_index.error. | 56 |
| abstract_inverted_index.errors | 70 |
| abstract_inverted_index.forest | 17, 226 |
| abstract_inverted_index.issue, | 90 |
| abstract_inverted_index.learns | 171 |
| abstract_inverted_index.matrix | 67, 102, 150, 174, 211 |
| abstract_inverted_index.method | 119, 202, 240 |
| abstract_inverted_index.played | 7 |
| abstract_inverted_index.spread | 84, 228 |
| abstract_inverted_index.tuning | 198 |
| abstract_inverted_index.values | 27, 38 |
| abstract_inverted_index.within | 241 |
| abstract_inverted_index.(OSSE). | 135 |
| abstract_inverted_index.FLC-GRU | 147 |
| abstract_inverted_index.Results | 115 |
| abstract_inverted_index.Through | 136 |
| abstract_inverted_index.address | 88 |
| abstract_inverted_index.crucial | 60 |
| abstract_inverted_index.dynamic | 21 |
| abstract_inverted_index.matrix) | 104 |
| abstract_inverted_index.reflect | 30 |
| abstract_inverted_index.results | 142 |
| abstract_inverted_index.spread. | 19 |
| abstract_inverted_index.thereby | 220 |
| abstract_inverted_index.utility | 215 |
| abstract_inverted_index.values. | 41, 165 |
| abstract_inverted_index.without | 182 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 57 |
| abstract_inverted_index.accuracy | 15, 129, 208, 224 |
| abstract_inverted_index.approach | 170 |
| abstract_inverted_index.contrast | 194 |
| abstract_inverted_index.directly | 175 |
| abstract_inverted_index.enhances | 24, 213 |
| abstract_inverted_index.improves | 204, 221 |
| abstract_inverted_index.indicate | 143 |
| abstract_inverted_index.methods, | 140 |
| abstract_inverted_index.methods. | 199 |
| abstract_inverted_index.neglects | 75 |
| abstract_inverted_index.observed | 40, 178 |
| abstract_inverted_index.proposed | 92, 169, 201, 239 |
| abstract_inverted_index.results. | 86 |
| abstract_inverted_index.targeted | 94 |
| abstract_inverted_index.temporal | 78 |
| abstract_inverted_index.weighted | 43 |
| abstract_inverted_index.wildfire | 156 |
| abstract_inverted_index.Moreover, | 230 |
| abstract_inverted_index.Observing | 131 |
| abstract_inverted_index.Recurrent | 112 |
| abstract_inverted_index.accuracy, | 64 |
| abstract_inverted_index.affecting | 62 |
| abstract_inverted_index.classical | 196 |
| abstract_inverted_index.estimated | 148 |
| abstract_inverted_index.framework | 123 |
| abstract_inverted_index.improving | 12 |
| abstract_inverted_index.knowledge | 186 |
| abstract_inverted_index.locations | 158 |
| abstract_inverted_index.magnitude | 52 |
| abstract_inverted_index.parameter | 61 |
| abstract_inverted_index.posterior | 197 |
| abstract_inverted_index.predicted | 37 |
| abstract_inverted_index.requiring | 183 |
| abstract_inverted_index.situation | 33 |
| abstract_inverted_index.technique | 23, 95 |
| abstract_inverted_index.validated | 125 |
| abstract_inverted_index.weighting | 35 |
| abstract_inverted_index.(FLC-GRU). | 114 |
| abstract_inverted_index.Background | 1 |
| abstract_inverted_index.Conclusion | 166 |
| abstract_inverted_index.Experiment | 134 |
| abstract_inverted_index.Simulation | 133 |
| abstract_inverted_index.analytical | 26 |
| abstract_inverted_index.associated | 55 |
| abstract_inverted_index.correction | 22, 152, 223 |
| abstract_inverted_index.covariance | 66, 101, 173 |
| abstract_inverted_index.determined | 49 |
| abstract_inverted_index.estimating | 97 |
| abstract_inverted_index.framework. | 244 |
| abstract_inverted_index.importance | 44 |
| abstract_inverted_index.inaccurate | 73 |
| abstract_inverted_index.integrated | 117 |
| abstract_inverted_index.prediction | 14, 63, 85, 157 |
| abstract_inverted_index.techniques | 5 |
| abstract_inverted_index.unfriendly | 82 |
| abstract_inverted_index.assumptions | 188 |
| abstract_inverted_index.comparisons | 137 |
| abstract_inverted_index.estimation, | 212 |
| abstract_inverted_index.observation | 69, 99 |
| abstract_inverted_index.rationality | 206 |
| abstract_inverted_index.significant | 9 |
| abstract_inverted_index.time-series | 177 |
| abstract_inverted_index.traditional | 139 |
| abstract_inverted_index.assimilation | 3 |
| abstract_inverted_index.calculations | 153 |
| abstract_inverted_index.contribution | 47 |
| abstract_inverted_index.correlation. | 79 |
| abstract_inverted_index.demonstrates | 234 |
| abstract_inverted_index.predictions. | 229 |
| abstract_inverted_index.Convolutional | 110 |
| abstract_inverted_index.applicability | 127, 236 |
| abstract_inverted_index.distribution, | 192 |
| abstract_inverted_index.observational | 217 |
| abstract_inverted_index.significantly | 203 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.6499999761581421 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.02718008 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |