Dynamic Online Label Distribution Feature Selection Based on Label Importance and Label Correlation Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/app15031466
Existing feature selection methods mainly target single-label learning and multi-label learning, and only a few algorithms are optimized for label distribution learning. In label distribution learning, the associated labels of each sample have different levels of importance. Therefore, multi-label feature selection algorithms cannot be directly applied to label distribution learning. Discretizing label distribution data into multi-label data will cause part of the supervision information to be lost. In most practical applications of label distribution learning, the feature space is undefined, and the features are in the form of flow features. To solve this problem, this paper applies fuzzy rough set theory and applies the flow feature framework to propose a dynamic label distribution feature selection algorithm that handles flow features. Experimental results show that the proposed method is more effective than six state-of-the-art feature selection algorithms on 12 datasets with respect to six representative evaluation metrics.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/app15031466
- OA Status
- gold
- Cited By
- 1
- References
- 65
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407036860
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407036860Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/app15031466Digital Object Identifier
- Title
-
Dynamic Online Label Distribution Feature Selection Based on Label Importance and Label CorrelationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-31Full publication date if available
- Authors
-
Wanlin Chen, Xiao Sun, Fuji RenList of authors in order
- Landing page
-
https://doi.org/10.3390/app15031466Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/app15031466Direct OA link when available
- Concepts
-
Feature selection, Computer science, Artificial intelligence, Multi-label classification, Feature (linguistics), Pattern recognition (psychology), Machine learning, Data mining, Selection (genetic algorithm), Feature vector, Distribution (mathematics), Mathematics, Philosophy, Mathematical analysis, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
65Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407036860 |
|---|---|
| doi | https://doi.org/10.3390/app15031466 |
| ids.doi | https://doi.org/10.3390/app15031466 |
| ids.openalex | https://openalex.org/W4407036860 |
| fwci | 4.81974515 |
| type | article |
| title | Dynamic Online Label Distribution Feature Selection Based on Label Importance and Label Correlation |
| biblio.issue | 3 |
| biblio.volume | 15 |
| biblio.last_page | 1466 |
| biblio.first_page | 1466 |
| topics[0].id | https://openalex.org/T11550 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Text and Document Classification Technologies |
| topics[1].id | https://openalex.org/T11063 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9951000213623047 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Rough Sets and Fuzzy Logic |
| topics[2].id | https://openalex.org/T12016 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9817000031471252 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1710 |
| topics[2].subfield.display_name | Information Systems |
| topics[2].display_name | Web Data Mining and Analysis |
| is_xpac | False |
| apc_list.value | 2300 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2490 |
| apc_paid.value | 2300 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2490 |
| concepts[0].id | https://openalex.org/C148483581 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6881279945373535 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q446488 |
| concepts[0].display_name | Feature selection |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6605663299560547 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6033997535705566 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2776482837 |
| concepts[3].level | 2 |
| concepts[3].score | 0.546576976776123 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3553958 |
| concepts[3].display_name | Multi-label classification |
| concepts[4].id | https://openalex.org/C2776401178 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5463048815727234 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[4].display_name | Feature (linguistics) |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5281596183776855 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4916577935218811 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.45929545164108276 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C81917197 |
| concepts[8].level | 2 |
| concepts[8].score | 0.42718109488487244 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[8].display_name | Selection (genetic algorithm) |
| concepts[9].id | https://openalex.org/C83665646 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4267321527004242 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q42139305 |
| concepts[9].display_name | Feature vector |
| concepts[10].id | https://openalex.org/C110121322 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4260762631893158 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q865811 |
| concepts[10].display_name | Distribution (mathematics) |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.23380783200263977 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C138885662 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[12].display_name | Philosophy |
| concepts[13].id | https://openalex.org/C134306372 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[13].display_name | Mathematical analysis |
| concepts[14].id | https://openalex.org/C41895202 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[14].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/feature-selection |
| keywords[0].score | 0.6881279945373535 |
| keywords[0].display_name | Feature selection |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6605663299560547 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6033997535705566 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/multi-label-classification |
| keywords[3].score | 0.546576976776123 |
| keywords[3].display_name | Multi-label classification |
| keywords[4].id | https://openalex.org/keywords/feature |
| keywords[4].score | 0.5463048815727234 |
| keywords[4].display_name | Feature (linguistics) |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.5281596183776855 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.4916577935218811 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.45929545164108276 |
| keywords[7].display_name | Data mining |
| keywords[8].id | https://openalex.org/keywords/selection |
| keywords[8].score | 0.42718109488487244 |
| keywords[8].display_name | Selection (genetic algorithm) |
| keywords[9].id | https://openalex.org/keywords/feature-vector |
| keywords[9].score | 0.4267321527004242 |
| keywords[9].display_name | Feature vector |
| keywords[10].id | https://openalex.org/keywords/distribution |
| keywords[10].score | 0.4260762631893158 |
| keywords[10].display_name | Distribution (mathematics) |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.23380783200263977 |
| keywords[11].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.3390/app15031466 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210205812 |
| locations[0].source.issn | 2076-3417 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2076-3417 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Applied Sciences |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Applied Sciences |
| locations[0].landing_page_url | https://doi.org/10.3390/app15031466 |
| locations[1].id | pmh:oai:doaj.org/article:b036d54f5ea142e6b1eb937c105f0b16 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Applied Sciences, Vol 15, Iss 3, p 1466 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/b036d54f5ea142e6b1eb937c105f0b16 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5025231438 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Wanlin Chen |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I16365422 |
| authorships[0].affiliations[0].raw_affiliation_string | Multimodal Affective Computing Lab, Hefei University of Technology, Hefei 230001, China |
| authorships[0].institutions[0].id | https://openalex.org/I16365422 |
| authorships[0].institutions[0].ror | https://ror.org/02czkny70 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I16365422 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Hefei University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Weiliang Chen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Multimodal Affective Computing Lab, Hefei University of Technology, Hefei 230001, China |
| authorships[1].author.id | https://openalex.org/A5088062069 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9750-7032 |
| authorships[1].author.display_name | Xiao Sun |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I16365422 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer Science and Information Engineering, Hefei University of Technology, Hefei 230001, China |
| authorships[1].institutions[0].id | https://openalex.org/I16365422 |
| authorships[1].institutions[0].ror | https://ror.org/02czkny70 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I16365422 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Hefei University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xiao Sun |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Computer Science and Information Engineering, Hefei University of Technology, Hefei 230001, China |
| authorships[2].author.id | https://openalex.org/A5071943346 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4860-9184 |
| authorships[2].author.display_name | Fuji Ren |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I150229711 |
| authorships[2].affiliations[0].raw_affiliation_string | The College of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China |
| authorships[2].institutions[0].id | https://openalex.org/I150229711 |
| authorships[2].institutions[0].ror | https://ror.org/04qr3zq92 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I150229711 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | University of Electronic Science and Technology of China |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Fuji Ren |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | The College of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/app15031466 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Dynamic Online Label Distribution Feature Selection Based on Label Importance and Label Correlation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11550 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Text and Document Classification Technologies |
| related_works | https://openalex.org/W4404781601, https://openalex.org/W4205762803, https://openalex.org/W2039871688, https://openalex.org/W2535856026, https://openalex.org/W2265065644, https://openalex.org/W4386564352, https://openalex.org/W2952668426, https://openalex.org/W1972401983, https://openalex.org/W2782564536, https://openalex.org/W2527691073 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/app15031466 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210205812 |
| best_oa_location.source.issn | 2076-3417 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2076-3417 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Applied Sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Applied Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.3390/app15031466 |
| primary_location.id | doi:10.3390/app15031466 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210205812 |
| primary_location.source.issn | 2076-3417 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2076-3417 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Applied Sciences |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Applied Sciences |
| primary_location.landing_page_url | https://doi.org/10.3390/app15031466 |
| publication_date | 2025-01-31 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2343038205, https://openalex.org/W2146241755, https://openalex.org/W2025081778, https://openalex.org/W3205749498, https://openalex.org/W2330485005, https://openalex.org/W2553156677, https://openalex.org/W1995903905, https://openalex.org/W295732247, https://openalex.org/W2269758193, https://openalex.org/W2086465730, https://openalex.org/W2191800066, https://openalex.org/W2090599083, https://openalex.org/W6640718358, https://openalex.org/W2067179717, https://openalex.org/W2083047046, https://openalex.org/W3212201412, https://openalex.org/W3217487116, https://openalex.org/W2922470279, https://openalex.org/W2999769113, https://openalex.org/W2784178186, https://openalex.org/W6776804981, https://openalex.org/W2978951558, https://openalex.org/W3196227100, https://openalex.org/W2143451122, https://openalex.org/W3101245099, https://openalex.org/W2801314826, https://openalex.org/W4285809405, https://openalex.org/W2517012834, https://openalex.org/W3157827682, https://openalex.org/W6692257784, https://openalex.org/W3138008028, https://openalex.org/W2743621318, https://openalex.org/W4392739516, https://openalex.org/W1983150145, https://openalex.org/W2981059842, https://openalex.org/W3170194900, https://openalex.org/W2788402790, https://openalex.org/W2066454034, https://openalex.org/W2605997098, https://openalex.org/W3097634570, https://openalex.org/W4311746733, https://openalex.org/W2313866064, https://openalex.org/W4207053154, https://openalex.org/W3045438681, https://openalex.org/W4225289801, https://openalex.org/W4289342538, https://openalex.org/W2079680557, https://openalex.org/W2556844550, https://openalex.org/W2980962597, https://openalex.org/W2622377737, https://openalex.org/W6675736572, https://openalex.org/W2150926065, https://openalex.org/W2028851602, https://openalex.org/W6799398612, https://openalex.org/W2948768062, https://openalex.org/W4304481487, https://openalex.org/W1972490990, https://openalex.org/W4212976187, https://openalex.org/W2888781447, https://openalex.org/W2016944307, https://openalex.org/W4297841597, https://openalex.org/W3105616927, https://openalex.org/W3187047110, https://openalex.org/W3023207840, https://openalex.org/W2257550357 |
| referenced_works_count | 65 |
| abstract_inverted_index.a | 13, 109 |
| abstract_inverted_index.12 | 137 |
| abstract_inverted_index.In | 22, 67 |
| abstract_inverted_index.To | 90 |
| abstract_inverted_index.be | 43, 65 |
| abstract_inverted_index.in | 84 |
| abstract_inverted_index.is | 78, 127 |
| abstract_inverted_index.of | 29, 35, 60, 71, 87 |
| abstract_inverted_index.on | 136 |
| abstract_inverted_index.to | 46, 64, 107, 141 |
| abstract_inverted_index.and | 8, 11, 80, 101 |
| abstract_inverted_index.are | 16, 83 |
| abstract_inverted_index.few | 14 |
| abstract_inverted_index.for | 18 |
| abstract_inverted_index.set | 99 |
| abstract_inverted_index.six | 131, 142 |
| abstract_inverted_index.the | 26, 61, 75, 81, 85, 103, 124 |
| abstract_inverted_index.data | 53, 56 |
| abstract_inverted_index.each | 30 |
| abstract_inverted_index.flow | 88, 104, 118 |
| abstract_inverted_index.form | 86 |
| abstract_inverted_index.have | 32 |
| abstract_inverted_index.into | 54 |
| abstract_inverted_index.more | 128 |
| abstract_inverted_index.most | 68 |
| abstract_inverted_index.only | 12 |
| abstract_inverted_index.part | 59 |
| abstract_inverted_index.show | 122 |
| abstract_inverted_index.than | 130 |
| abstract_inverted_index.that | 116, 123 |
| abstract_inverted_index.this | 92, 94 |
| abstract_inverted_index.will | 57 |
| abstract_inverted_index.with | 139 |
| abstract_inverted_index.cause | 58 |
| abstract_inverted_index.fuzzy | 97 |
| abstract_inverted_index.label | 19, 23, 47, 51, 72, 111 |
| abstract_inverted_index.lost. | 66 |
| abstract_inverted_index.paper | 95 |
| abstract_inverted_index.rough | 98 |
| abstract_inverted_index.solve | 91 |
| abstract_inverted_index.space | 77 |
| abstract_inverted_index.cannot | 42 |
| abstract_inverted_index.labels | 28 |
| abstract_inverted_index.levels | 34 |
| abstract_inverted_index.mainly | 4 |
| abstract_inverted_index.method | 126 |
| abstract_inverted_index.sample | 31 |
| abstract_inverted_index.target | 5 |
| abstract_inverted_index.theory | 100 |
| abstract_inverted_index.applied | 45 |
| abstract_inverted_index.applies | 96, 102 |
| abstract_inverted_index.dynamic | 110 |
| abstract_inverted_index.feature | 1, 39, 76, 105, 113, 133 |
| abstract_inverted_index.handles | 117 |
| abstract_inverted_index.methods | 3 |
| abstract_inverted_index.propose | 108 |
| abstract_inverted_index.respect | 140 |
| abstract_inverted_index.results | 121 |
| abstract_inverted_index.Existing | 0 |
| abstract_inverted_index.datasets | 138 |
| abstract_inverted_index.directly | 44 |
| abstract_inverted_index.features | 82 |
| abstract_inverted_index.learning | 7 |
| abstract_inverted_index.metrics. | 145 |
| abstract_inverted_index.problem, | 93 |
| abstract_inverted_index.proposed | 125 |
| abstract_inverted_index.algorithm | 115 |
| abstract_inverted_index.different | 33 |
| abstract_inverted_index.effective | 129 |
| abstract_inverted_index.features. | 89, 119 |
| abstract_inverted_index.framework | 106 |
| abstract_inverted_index.learning, | 10, 25, 74 |
| abstract_inverted_index.learning. | 21, 49 |
| abstract_inverted_index.optimized | 17 |
| abstract_inverted_index.practical | 69 |
| abstract_inverted_index.selection | 2, 40, 114, 134 |
| abstract_inverted_index.Therefore, | 37 |
| abstract_inverted_index.algorithms | 15, 41, 135 |
| abstract_inverted_index.associated | 27 |
| abstract_inverted_index.evaluation | 144 |
| abstract_inverted_index.undefined, | 79 |
| abstract_inverted_index.importance. | 36 |
| abstract_inverted_index.information | 63 |
| abstract_inverted_index.multi-label | 9, 38, 55 |
| abstract_inverted_index.supervision | 62 |
| abstract_inverted_index.Discretizing | 50 |
| abstract_inverted_index.Experimental | 120 |
| abstract_inverted_index.applications | 70 |
| abstract_inverted_index.distribution | 20, 24, 48, 52, 73, 112 |
| abstract_inverted_index.single-label | 6 |
| abstract_inverted_index.representative | 143 |
| abstract_inverted_index.state-of-the-art | 132 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5071943346 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I150229711 |
| citation_normalized_percentile.value | 0.92697019 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |