DYNAMIC PROGRAMMING FOR CURVED REFLECTION SYMMETRY DETECTION IN SEGMENTED IMAGES Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.5194/isprs-archives-xlviii-2-w3-2023-157-2023
This study proposes a method for detecting curved reflection symmetry in binary and grayscale images. The crucial step is to construct a curvilinear symmetry axis generating a nonlinear transformation of the image coordinates that projects the curve on the Y axis and makes the image maximally symmetric about this axis in terms of the Jaccard index. We proposed analytical estimations for the symmetry axis curvature to make the transform bijective. We applied dynamic programming to construct the curvilinear symmetry axis. The axis points are generated one by one with a local direction change at each point. To improve the computational efficiency of the method for images of a given size, we construct a graph of possible transitions in advance. To estimate the symmetry in grayscale images, we proposed two analogs to the Jaccard index. The experiments with image libraries demonstrated that the method correctly handles images containing a single object on a homogeneous background.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5194/isprs-archives-xlviii-2-w3-2023-157-2023
- OA Status
- diamond
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4376270543
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4376270543Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5194/isprs-archives-xlviii-2-w3-2023-157-2023Digital Object Identifier
- Title
-
DYNAMIC PROGRAMMING FOR CURVED REFLECTION SYMMETRY DETECTION IN SEGMENTED IMAGESWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-05-12Full publication date if available
- Authors
-
Nikita Lomov, Oleg SeredinList of authors in order
- Landing page
-
https://doi.org/10.5194/isprs-archives-xlviii-2-w3-2023-157-2023Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5194/isprs-archives-xlviii-2-w3-2023-157-2023Direct OA link when available
- Concepts
-
Grayscale, Reflection symmetry, Jaccard index, Symmetry (geometry), Curvature, Mathematics, Curvilinear coordinates, Artificial intelligence, Computer science, Computer vision, Geometry, Algorithm, Image (mathematics), Pattern recognition (psychology)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4376270543 |
|---|---|
| doi | https://doi.org/10.5194/isprs-archives-xlviii-2-w3-2023-157-2023 |
| ids.doi | https://doi.org/10.5194/isprs-archives-xlviii-2-w3-2023-157-2023 |
| ids.openalex | https://openalex.org/W4376270543 |
| fwci | 0.18196834 |
| type | article |
| title | DYNAMIC PROGRAMMING FOR CURVED REFLECTION SYMMETRY DETECTION IN SEGMENTED IMAGES |
| biblio.issue | |
| biblio.volume | XLVIII-2/W3-2023 |
| biblio.last_page | 163 |
| biblio.first_page | 157 |
| topics[0].id | https://openalex.org/T10824 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9297999739646912 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Image Retrieval and Classification Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C78201319 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7257590889930725 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q685727 |
| concepts[0].display_name | Grayscale |
| concepts[1].id | https://openalex.org/C133978748 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7200380563735962 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q15955882 |
| concepts[1].display_name | Reflection symmetry |
| concepts[2].id | https://openalex.org/C203519979 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6835304498672485 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q865360 |
| concepts[2].display_name | Jaccard index |
| concepts[3].id | https://openalex.org/C2779886137 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6186515092849731 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21030012 |
| concepts[3].display_name | Symmetry (geometry) |
| concepts[4].id | https://openalex.org/C195065555 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5759327411651611 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q214881 |
| concepts[4].display_name | Curvature |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.514665424823761 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| concepts[6].id | https://openalex.org/C98343798 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4712410569190979 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1790208 |
| concepts[6].display_name | Curvilinear coordinates |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4353156089782715 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.4171214699745178 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C31972630 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3975569009780884 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[9].display_name | Computer vision |
| concepts[10].id | https://openalex.org/C2524010 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3597348630428314 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[10].display_name | Geometry |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.34975525736808777 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C115961682 |
| concepts[12].level | 2 |
| concepts[12].score | 0.3368690013885498 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[12].display_name | Image (mathematics) |
| concepts[13].id | https://openalex.org/C153180895 |
| concepts[13].level | 2 |
| concepts[13].score | 0.23793265223503113 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[13].display_name | Pattern recognition (psychology) |
| keywords[0].id | https://openalex.org/keywords/grayscale |
| keywords[0].score | 0.7257590889930725 |
| keywords[0].display_name | Grayscale |
| keywords[1].id | https://openalex.org/keywords/reflection-symmetry |
| keywords[1].score | 0.7200380563735962 |
| keywords[1].display_name | Reflection symmetry |
| keywords[2].id | https://openalex.org/keywords/jaccard-index |
| keywords[2].score | 0.6835304498672485 |
| keywords[2].display_name | Jaccard index |
| keywords[3].id | https://openalex.org/keywords/symmetry |
| keywords[3].score | 0.6186515092849731 |
| keywords[3].display_name | Symmetry (geometry) |
| keywords[4].id | https://openalex.org/keywords/curvature |
| keywords[4].score | 0.5759327411651611 |
| keywords[4].display_name | Curvature |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.514665424823761 |
| keywords[5].display_name | Mathematics |
| keywords[6].id | https://openalex.org/keywords/curvilinear-coordinates |
| keywords[6].score | 0.4712410569190979 |
| keywords[6].display_name | Curvilinear coordinates |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.4353156089782715 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.4171214699745178 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/computer-vision |
| keywords[9].score | 0.3975569009780884 |
| keywords[9].display_name | Computer vision |
| keywords[10].id | https://openalex.org/keywords/geometry |
| keywords[10].score | 0.3597348630428314 |
| keywords[10].display_name | Geometry |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.34975525736808777 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/image |
| keywords[12].score | 0.3368690013885498 |
| keywords[12].display_name | Image (mathematics) |
| keywords[13].id | https://openalex.org/keywords/pattern-recognition |
| keywords[13].score | 0.23793265223503113 |
| keywords[13].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | doi:10.5194/isprs-archives-xlviii-2-w3-2023-157-2023 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2737215817 |
| locations[0].source.issn | 1682-1750, 1682-1777, 2194-9034 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1682-1750 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | The international archives of the photogrammetry, remote sensing and spatial information sciences/International archives of the photogrammetry, remote sensing and spatial information sciences |
| locations[0].source.host_organization | https://openalex.org/P4310313756 |
| locations[0].source.host_organization_name | Copernicus Publications |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310313756 |
| locations[0].source.host_organization_lineage_names | Copernicus Publications |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| locations[0].landing_page_url | https://doi.org/10.5194/isprs-archives-xlviii-2-w3-2023-157-2023 |
| locations[1].id | pmh:oai:doaj.org/article:6fe1d94672734deda3454732a47cd839 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol XLVIII-2-W3-2023, Pp 157-163 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/6fe1d94672734deda3454732a47cd839 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5037596664 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4286-1768 |
| authorships[0].author.display_name | Nikita Lomov |
| authorships[0].countries | RU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I127366699 |
| authorships[0].affiliations[0].raw_affiliation_string | Tula State University, Office of Research and Development, 300012, Tula, Russia |
| authorships[0].institutions[0].id | https://openalex.org/I127366699 |
| authorships[0].institutions[0].ror | https://ror.org/05shr3z13 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I127366699 |
| authorships[0].institutions[0].country_code | RU |
| authorships[0].institutions[0].display_name | Tula State University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | N. Lomov |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Tula State University, Office of Research and Development, 300012, Tula, Russia |
| authorships[1].author.id | https://openalex.org/A5045892613 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0410-7705 |
| authorships[1].author.display_name | Oleg Seredin |
| authorships[1].countries | RU |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I127366699 |
| authorships[1].affiliations[0].raw_affiliation_string | Tula State University, Cognitive Technologies and Simulation Systems Lab, 300012, Tula, Russia |
| authorships[1].institutions[0].id | https://openalex.org/I127366699 |
| authorships[1].institutions[0].ror | https://ror.org/05shr3z13 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I127366699 |
| authorships[1].institutions[0].country_code | RU |
| authorships[1].institutions[0].display_name | Tula State University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | O. Seredin |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Tula State University, Cognitive Technologies and Simulation Systems Lab, 300012, Tula, Russia |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5194/isprs-archives-xlviii-2-w3-2023-157-2023 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | DYNAMIC PROGRAMMING FOR CURVED REFLECTION SYMMETRY DETECTION IN SEGMENTED IMAGES |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10824 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9297999739646912 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Image Retrieval and Classification Techniques |
| related_works | https://openalex.org/W2351934618, https://openalex.org/W2105860741, https://openalex.org/W649143900, https://openalex.org/W4287206313, https://openalex.org/W3163798933, https://openalex.org/W2545569975, https://openalex.org/W2944239601, https://openalex.org/W4220988720, https://openalex.org/W3168648756, https://openalex.org/W4297337237 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.5194/isprs-archives-xlviii-2-w3-2023-157-2023 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2737215817 |
| best_oa_location.source.issn | 1682-1750, 1682-1777, 2194-9034 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1682-1750 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | The international archives of the photogrammetry, remote sensing and spatial information sciences/International archives of the photogrammetry, remote sensing and spatial information sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310313756 |
| best_oa_location.source.host_organization_name | Copernicus Publications |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310313756 |
| best_oa_location.source.host_organization_lineage_names | Copernicus Publications |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.5194/isprs-archives-xlviii-2-w3-2023-157-2023 |
| primary_location.id | doi:10.5194/isprs-archives-xlviii-2-w3-2023-157-2023 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2737215817 |
| primary_location.source.issn | 1682-1750, 1682-1777, 2194-9034 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1682-1750 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | The international archives of the photogrammetry, remote sensing and spatial information sciences/International archives of the photogrammetry, remote sensing and spatial information sciences |
| primary_location.source.host_organization | https://openalex.org/P4310313756 |
| primary_location.source.host_organization_name | Copernicus Publications |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310313756 |
| primary_location.source.host_organization_lineage_names | Copernicus Publications |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| primary_location.landing_page_url | https://doi.org/10.5194/isprs-archives-xlviii-2-w3-2023-157-2023 |
| publication_date | 2023-05-12 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.Y | 40 |
| abstract_inverted_index.a | 4, 22, 27, 90, 108, 113, 148, 152 |
| abstract_inverted_index.To | 97, 120 |
| abstract_inverted_index.We | 57, 71 |
| abstract_inverted_index.at | 94 |
| abstract_inverted_index.by | 87 |
| abstract_inverted_index.in | 11, 51, 118, 124 |
| abstract_inverted_index.is | 19 |
| abstract_inverted_index.of | 30, 53, 102, 107, 115 |
| abstract_inverted_index.on | 38, 151 |
| abstract_inverted_index.to | 20, 66, 75, 131 |
| abstract_inverted_index.we | 111, 127 |
| abstract_inverted_index.The | 16, 81, 135 |
| abstract_inverted_index.and | 13, 42 |
| abstract_inverted_index.are | 84 |
| abstract_inverted_index.for | 6, 61, 105 |
| abstract_inverted_index.one | 86, 88 |
| abstract_inverted_index.the | 31, 36, 39, 44, 54, 62, 68, 77, 99, 103, 122, 132, 142 |
| abstract_inverted_index.two | 129 |
| abstract_inverted_index.This | 1 |
| abstract_inverted_index.axis | 25, 41, 50, 64, 82 |
| abstract_inverted_index.each | 95 |
| abstract_inverted_index.make | 67 |
| abstract_inverted_index.step | 18 |
| abstract_inverted_index.that | 34, 141 |
| abstract_inverted_index.this | 49 |
| abstract_inverted_index.with | 89, 137 |
| abstract_inverted_index.about | 48 |
| abstract_inverted_index.axis. | 80 |
| abstract_inverted_index.curve | 37 |
| abstract_inverted_index.given | 109 |
| abstract_inverted_index.graph | 114 |
| abstract_inverted_index.image | 32, 45, 138 |
| abstract_inverted_index.local | 91 |
| abstract_inverted_index.makes | 43 |
| abstract_inverted_index.size, | 110 |
| abstract_inverted_index.study | 2 |
| abstract_inverted_index.terms | 52 |
| abstract_inverted_index.binary | 12 |
| abstract_inverted_index.change | 93 |
| abstract_inverted_index.curved | 8 |
| abstract_inverted_index.images | 106, 146 |
| abstract_inverted_index.index. | 56, 134 |
| abstract_inverted_index.method | 5, 104, 143 |
| abstract_inverted_index.object | 150 |
| abstract_inverted_index.point. | 96 |
| abstract_inverted_index.points | 83 |
| abstract_inverted_index.single | 149 |
| abstract_inverted_index.Jaccard | 55, 133 |
| abstract_inverted_index.analogs | 130 |
| abstract_inverted_index.applied | 72 |
| abstract_inverted_index.crucial | 17 |
| abstract_inverted_index.dynamic | 73 |
| abstract_inverted_index.handles | 145 |
| abstract_inverted_index.images, | 126 |
| abstract_inverted_index.images. | 15 |
| abstract_inverted_index.improve | 98 |
| abstract_inverted_index.advance. | 119 |
| abstract_inverted_index.estimate | 121 |
| abstract_inverted_index.possible | 116 |
| abstract_inverted_index.projects | 35 |
| abstract_inverted_index.proposed | 58, 128 |
| abstract_inverted_index.proposes | 3 |
| abstract_inverted_index.symmetry | 10, 24, 63, 79, 123 |
| abstract_inverted_index.Abstract. | 0 |
| abstract_inverted_index.construct | 21, 76, 112 |
| abstract_inverted_index.correctly | 144 |
| abstract_inverted_index.curvature | 65 |
| abstract_inverted_index.detecting | 7 |
| abstract_inverted_index.direction | 92 |
| abstract_inverted_index.generated | 85 |
| abstract_inverted_index.grayscale | 14, 125 |
| abstract_inverted_index.libraries | 139 |
| abstract_inverted_index.maximally | 46 |
| abstract_inverted_index.nonlinear | 28 |
| abstract_inverted_index.symmetric | 47 |
| abstract_inverted_index.transform | 69 |
| abstract_inverted_index.analytical | 59 |
| abstract_inverted_index.bijective. | 70 |
| abstract_inverted_index.containing | 147 |
| abstract_inverted_index.efficiency | 101 |
| abstract_inverted_index.generating | 26 |
| abstract_inverted_index.reflection | 9 |
| abstract_inverted_index.background. | 154 |
| abstract_inverted_index.coordinates | 33 |
| abstract_inverted_index.curvilinear | 23, 78 |
| abstract_inverted_index.estimations | 60 |
| abstract_inverted_index.experiments | 136 |
| abstract_inverted_index.homogeneous | 153 |
| abstract_inverted_index.programming | 74 |
| abstract_inverted_index.transitions | 117 |
| abstract_inverted_index.demonstrated | 140 |
| abstract_inverted_index.computational | 100 |
| abstract_inverted_index.transformation | 29 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.4399999976158142 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.40814663 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |