Dynamic Scene Graph for Mutual-Cognition Generation in Proactive Human-Robot Collaboration Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1016/j.procir.2022.05.089
Human-robot collaboration (HRC) plays a crucial role in agile, flexible, and human-centric manufacturing towards the mass personalization transition. Nevertheless, in today's HRC tasks, either humans or robots need to follow the partners' commands and instructions along collaborative activities progressing, instead of proactive, mutual engagement. The non-semantic perception of HRC scenarios impedes mutually needed, proactive planning and high-cognitive capabilities in existing HRC systems. To overcome the bottleneck, this research explores a dynamic scene graph-based method for mutual-cognition generation in Proactive HRC applications. Firstly, a spatial-attention object detector is utilized to dynamically perceive objects in industrial settings. Secondly, a linking prediction module is leveraged to construct HRC scene graphs. An attentional graph convolutional network (GCN) is utilized to capture relations between industrial parts, human operators, and robot operations and reason structural connections of human-robot collaborative processing as graph embedding, which links to mutual planners for human operation supports and robot proactive instructions. Lastly, the Proactive HRC implementation is demonstrated on disassembly tasks of aging electronic vehicle batteries (EVBs) and evaluate its mutual-cognition capabilities.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.procir.2022.05.089
- OA Status
- diamond
- Cited By
- 15
- References
- 24
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4285265289
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4285265289Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.procir.2022.05.089Digital Object Identifier
- Title
-
Dynamic Scene Graph for Mutual-Cognition Generation in Proactive Human-Robot CollaborationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-01-01Full publication date if available
- Authors
-
Shufei Li, Pai Zheng, Zuoxu Wang, Junming Fan, Lihui WangList of authors in order
- Landing page
-
https://doi.org/10.1016/j.procir.2022.05.089Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.procir.2022.05.089Direct OA link when available
- Concepts
-
Bottleneck, Human–computer interaction, Computer science, Robot, Cognition, Human–robot interaction, Graph, Artificial intelligence, Psychology, Embedded system, Neuroscience, Theoretical computer scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
15Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 3, 2023: 5, 2022: 2Per-year citation counts (last 5 years)
- References (count)
-
24Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4285265289 |
|---|---|
| doi | https://doi.org/10.1016/j.procir.2022.05.089 |
| ids.doi | https://doi.org/10.1016/j.procir.2022.05.089 |
| ids.openalex | https://openalex.org/W4285265289 |
| fwci | 2.37845625 |
| type | article |
| title | Dynamic Scene Graph for Mutual-Cognition Generation in Proactive Human-Robot Collaboration |
| biblio.issue | |
| biblio.volume | 107 |
| biblio.last_page | 948 |
| biblio.first_page | 943 |
| topics[0].id | https://openalex.org/T11159 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9940999746322632 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2209 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Manufacturing Process and Optimization |
| topics[1].id | https://openalex.org/T10653 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9781000018119812 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Robot Manipulation and Learning |
| topics[2].id | https://openalex.org/T10763 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9578999876976013 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2209 |
| topics[2].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[2].display_name | Digital Transformation in Industry |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780513914 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6632784008979797 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q18210350 |
| concepts[0].display_name | Bottleneck |
| concepts[1].id | https://openalex.org/C107457646 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6193831562995911 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[1].display_name | Human–computer interaction |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6188209056854248 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C90509273 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5776849985122681 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11012 |
| concepts[3].display_name | Robot |
| concepts[4].id | https://openalex.org/C169900460 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5538092851638794 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2200417 |
| concepts[4].display_name | Cognition |
| concepts[5].id | https://openalex.org/C145460709 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5160831809043884 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q859951 |
| concepts[5].display_name | Human–robot interaction |
| concepts[6].id | https://openalex.org/C132525143 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4783629775047302 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[6].display_name | Graph |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.43320250511169434 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C15744967 |
| concepts[8].level | 0 |
| concepts[8].score | 0.14371219277381897 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[8].display_name | Psychology |
| concepts[9].id | https://openalex.org/C149635348 |
| concepts[9].level | 1 |
| concepts[9].score | 0.09642180800437927 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q193040 |
| concepts[9].display_name | Embedded system |
| concepts[10].id | https://openalex.org/C169760540 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[10].display_name | Neuroscience |
| concepts[11].id | https://openalex.org/C80444323 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[11].display_name | Theoretical computer science |
| keywords[0].id | https://openalex.org/keywords/bottleneck |
| keywords[0].score | 0.6632784008979797 |
| keywords[0].display_name | Bottleneck |
| keywords[1].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[1].score | 0.6193831562995911 |
| keywords[1].display_name | Human–computer interaction |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6188209056854248 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/robot |
| keywords[3].score | 0.5776849985122681 |
| keywords[3].display_name | Robot |
| keywords[4].id | https://openalex.org/keywords/cognition |
| keywords[4].score | 0.5538092851638794 |
| keywords[4].display_name | Cognition |
| keywords[5].id | https://openalex.org/keywords/human–robot-interaction |
| keywords[5].score | 0.5160831809043884 |
| keywords[5].display_name | Human–robot interaction |
| keywords[6].id | https://openalex.org/keywords/graph |
| keywords[6].score | 0.4783629775047302 |
| keywords[6].display_name | Graph |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.43320250511169434 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/psychology |
| keywords[8].score | 0.14371219277381897 |
| keywords[8].display_name | Psychology |
| keywords[9].id | https://openalex.org/keywords/embedded-system |
| keywords[9].score | 0.09642180800437927 |
| keywords[9].display_name | Embedded system |
| language | en |
| locations[0].id | doi:10.1016/j.procir.2022.05.089 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2898565713 |
| locations[0].source.issn | 2212-8271 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2212-8271 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Procedia CIRP |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Procedia CIRP |
| locations[0].landing_page_url | https://doi.org/10.1016/j.procir.2022.05.089 |
| locations[1].id | pmh:oai:ira.lib.polyu.edu.hk:10397/101755 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400205 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PolyU Institutional Research Archive (Hong Kong Polytechnic University) |
| locations[1].source.host_organization | https://openalex.org/I14243506 |
| locations[1].source.host_organization_name | Hong Kong Polytechnic University |
| locations[1].source.host_organization_lineage | https://openalex.org/I14243506 |
| locations[1].license | cc-by-nc-nd |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Journal/Magazine Article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://hdl.handle.net/10397/101755 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5058018789 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5684-6756 |
| authorships[0].author.display_name | Shufei Li |
| authorships[0].countries | HK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I14243506 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, China |
| authorships[0].institutions[0].id | https://openalex.org/I14243506 |
| authorships[0].institutions[0].ror | https://ror.org/0030zas98 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I14243506 |
| authorships[0].institutions[0].country_code | HK |
| authorships[0].institutions[0].display_name | Hong Kong Polytechnic University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shufei Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, China |
| authorships[1].author.id | https://openalex.org/A5079101040 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2329-8634 |
| authorships[1].author.display_name | Pai Zheng |
| authorships[1].countries | HK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I14243506 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, China |
| authorships[1].institutions[0].id | https://openalex.org/I14243506 |
| authorships[1].institutions[0].ror | https://ror.org/0030zas98 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I14243506 |
| authorships[1].institutions[0].country_code | HK |
| authorships[1].institutions[0].display_name | Hong Kong Polytechnic University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Pai Zheng |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, China |
| authorships[2].author.id | https://openalex.org/A5037251172 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2524-1217 |
| authorships[2].author.display_name | Zuoxu Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I82880672 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Industrial and Manufacturing Systems Engineering, Beihang University, Beijing, China |
| authorships[2].institutions[0].id | https://openalex.org/I82880672 |
| authorships[2].institutions[0].ror | https://ror.org/00wk2mp56 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I82880672 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Beihang University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zuoxu Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Industrial and Manufacturing Systems Engineering, Beihang University, Beijing, China |
| authorships[3].author.id | https://openalex.org/A5028611772 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9317-0428 |
| authorships[3].author.display_name | Junming Fan |
| authorships[3].countries | HK |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I14243506 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, China |
| authorships[3].institutions[0].id | https://openalex.org/I14243506 |
| authorships[3].institutions[0].ror | https://ror.org/0030zas98 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I14243506 |
| authorships[3].institutions[0].country_code | HK |
| authorships[3].institutions[0].display_name | Hong Kong Polytechnic University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Junming Fan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, China |
| authorships[4].author.id | https://openalex.org/A5100434965 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8679-8049 |
| authorships[4].author.display_name | Lihui Wang |
| authorships[4].countries | SE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I86987016 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Production Engineering, KTH Royal Institute of Technology, Stockholm, Sweden |
| authorships[4].institutions[0].id | https://openalex.org/I86987016 |
| authorships[4].institutions[0].ror | https://ror.org/026vcq606 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I86987016 |
| authorships[4].institutions[0].country_code | SE |
| authorships[4].institutions[0].display_name | KTH Royal Institute of Technology |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Lihui Wang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Production Engineering, KTH Royal Institute of Technology, Stockholm, Sweden |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.procir.2022.05.089 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Dynamic Scene Graph for Mutual-Cognition Generation in Proactive Human-Robot Collaboration |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11159 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9940999746322632 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2209 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Manufacturing Process and Optimization |
| related_works | https://openalex.org/W3042490037, https://openalex.org/W1497899746, https://openalex.org/W4312091514, https://openalex.org/W4285102375, https://openalex.org/W3101585944, https://openalex.org/W4288102937, https://openalex.org/W3097632046, https://openalex.org/W4283782265, https://openalex.org/W2323122434, https://openalex.org/W4229726131 |
| cited_by_count | 15 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.procir.2022.05.089 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2898565713 |
| best_oa_location.source.issn | 2212-8271 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2212-8271 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Procedia CIRP |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Procedia CIRP |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.procir.2022.05.089 |
| primary_location.id | doi:10.1016/j.procir.2022.05.089 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2898565713 |
| primary_location.source.issn | 2212-8271 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2212-8271 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Procedia CIRP |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Procedia CIRP |
| primary_location.landing_page_url | https://doi.org/10.1016/j.procir.2022.05.089 |
| publication_date | 2022-01-01 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3205172848, https://openalex.org/W4200449846, https://openalex.org/W2955808192, https://openalex.org/W3217651858, https://openalex.org/W3088667626, https://openalex.org/W3204200719, https://openalex.org/W3024513037, https://openalex.org/W3046216614, https://openalex.org/W3183211010, https://openalex.org/W3034213471, https://openalex.org/W2886970679, https://openalex.org/W2094537981, https://openalex.org/W3128650182, https://openalex.org/W2890106798, https://openalex.org/W3159728644, https://openalex.org/W3051279352, https://openalex.org/W3089045049, https://openalex.org/W2888519266, https://openalex.org/W3111182193, https://openalex.org/W2887665961, https://openalex.org/W2963349093, https://openalex.org/W3207626483, https://openalex.org/W2969679616, https://openalex.org/W4206654130 |
| referenced_works_count | 24 |
| abstract_inverted_index.a | 4, 69, 82, 96 |
| abstract_inverted_index.An | 107 |
| abstract_inverted_index.To | 62 |
| abstract_inverted_index.as | 134 |
| abstract_inverted_index.in | 7, 19, 58, 77, 92 |
| abstract_inverted_index.is | 86, 100, 113, 155 |
| abstract_inverted_index.of | 40, 47, 130, 160 |
| abstract_inverted_index.on | 157 |
| abstract_inverted_index.or | 25 |
| abstract_inverted_index.to | 28, 88, 102, 115, 139 |
| abstract_inverted_index.HRC | 21, 48, 60, 79, 104, 153 |
| abstract_inverted_index.The | 44 |
| abstract_inverted_index.and | 10, 33, 55, 123, 126, 146, 166 |
| abstract_inverted_index.for | 74, 142 |
| abstract_inverted_index.its | 168 |
| abstract_inverted_index.the | 14, 30, 64, 151 |
| abstract_inverted_index.mass | 15 |
| abstract_inverted_index.need | 27 |
| abstract_inverted_index.role | 6 |
| abstract_inverted_index.this | 66 |
| abstract_inverted_index.(GCN) | 112 |
| abstract_inverted_index.(HRC) | 2 |
| abstract_inverted_index.aging | 161 |
| abstract_inverted_index.along | 35 |
| abstract_inverted_index.graph | 109, 135 |
| abstract_inverted_index.human | 121, 143 |
| abstract_inverted_index.links | 138 |
| abstract_inverted_index.plays | 3 |
| abstract_inverted_index.robot | 124, 147 |
| abstract_inverted_index.scene | 71, 105 |
| abstract_inverted_index.tasks | 159 |
| abstract_inverted_index.which | 137 |
| abstract_inverted_index.(EVBs) | 165 |
| abstract_inverted_index.agile, | 8 |
| abstract_inverted_index.either | 23 |
| abstract_inverted_index.follow | 29 |
| abstract_inverted_index.humans | 24 |
| abstract_inverted_index.method | 73 |
| abstract_inverted_index.module | 99 |
| abstract_inverted_index.mutual | 42, 140 |
| abstract_inverted_index.object | 84 |
| abstract_inverted_index.parts, | 120 |
| abstract_inverted_index.reason | 127 |
| abstract_inverted_index.robots | 26 |
| abstract_inverted_index.tasks, | 22 |
| abstract_inverted_index.Lastly, | 150 |
| abstract_inverted_index.between | 118 |
| abstract_inverted_index.capture | 116 |
| abstract_inverted_index.crucial | 5 |
| abstract_inverted_index.dynamic | 70 |
| abstract_inverted_index.graphs. | 106 |
| abstract_inverted_index.impedes | 50 |
| abstract_inverted_index.instead | 39 |
| abstract_inverted_index.linking | 97 |
| abstract_inverted_index.needed, | 52 |
| abstract_inverted_index.network | 111 |
| abstract_inverted_index.objects | 91 |
| abstract_inverted_index.today's | 20 |
| abstract_inverted_index.towards | 13 |
| abstract_inverted_index.vehicle | 163 |
| abstract_inverted_index.Firstly, | 81 |
| abstract_inverted_index.commands | 32 |
| abstract_inverted_index.detector | 85 |
| abstract_inverted_index.evaluate | 167 |
| abstract_inverted_index.existing | 59 |
| abstract_inverted_index.explores | 68 |
| abstract_inverted_index.mutually | 51 |
| abstract_inverted_index.overcome | 63 |
| abstract_inverted_index.perceive | 90 |
| abstract_inverted_index.planners | 141 |
| abstract_inverted_index.planning | 54 |
| abstract_inverted_index.research | 67 |
| abstract_inverted_index.supports | 145 |
| abstract_inverted_index.systems. | 61 |
| abstract_inverted_index.utilized | 87, 114 |
| abstract_inverted_index.Proactive | 78, 152 |
| abstract_inverted_index.Secondly, | 95 |
| abstract_inverted_index.batteries | 164 |
| abstract_inverted_index.construct | 103 |
| abstract_inverted_index.flexible, | 9 |
| abstract_inverted_index.leveraged | 101 |
| abstract_inverted_index.operation | 144 |
| abstract_inverted_index.partners' | 31 |
| abstract_inverted_index.proactive | 53, 148 |
| abstract_inverted_index.relations | 117 |
| abstract_inverted_index.scenarios | 49 |
| abstract_inverted_index.settings. | 94 |
| abstract_inverted_index.activities | 37 |
| abstract_inverted_index.electronic | 162 |
| abstract_inverted_index.embedding, | 136 |
| abstract_inverted_index.generation | 76 |
| abstract_inverted_index.industrial | 93, 119 |
| abstract_inverted_index.operations | 125 |
| abstract_inverted_index.operators, | 122 |
| abstract_inverted_index.perception | 46 |
| abstract_inverted_index.prediction | 98 |
| abstract_inverted_index.proactive, | 41 |
| abstract_inverted_index.processing | 133 |
| abstract_inverted_index.structural | 128 |
| abstract_inverted_index.Human-robot | 0 |
| abstract_inverted_index.attentional | 108 |
| abstract_inverted_index.bottleneck, | 65 |
| abstract_inverted_index.connections | 129 |
| abstract_inverted_index.disassembly | 158 |
| abstract_inverted_index.dynamically | 89 |
| abstract_inverted_index.engagement. | 43 |
| abstract_inverted_index.graph-based | 72 |
| abstract_inverted_index.human-robot | 131 |
| abstract_inverted_index.transition. | 17 |
| abstract_inverted_index.capabilities | 57 |
| abstract_inverted_index.demonstrated | 156 |
| abstract_inverted_index.instructions | 34 |
| abstract_inverted_index.non-semantic | 45 |
| abstract_inverted_index.progressing, | 38 |
| abstract_inverted_index.Nevertheless, | 18 |
| abstract_inverted_index.applications. | 80 |
| abstract_inverted_index.capabilities. | 170 |
| abstract_inverted_index.collaboration | 1 |
| abstract_inverted_index.collaborative | 36, 132 |
| abstract_inverted_index.convolutional | 110 |
| abstract_inverted_index.human-centric | 11 |
| abstract_inverted_index.instructions. | 149 |
| abstract_inverted_index.manufacturing | 12 |
| abstract_inverted_index.high-cognitive | 56 |
| abstract_inverted_index.implementation | 154 |
| abstract_inverted_index.personalization | 16 |
| abstract_inverted_index.mutual-cognition | 75, 169 |
| abstract_inverted_index.spatial-attention | 83 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5079101040 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I14243506 |
| citation_normalized_percentile.value | 0.88222528 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |