Dynamically Self-adjusting Gaussian Processes for Data Stream Modelling Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1007/978-3-031-15791-2_10
One of the major challenges in time series analysis are changing data distributions, especially when processing data streams. To ensure an up-to-date model delivering useful predictions at all times, model reconfigurations are required to adapt to such evolving streams. For Gaussian processes, this might require the adaptation of the internal kernel expression. In this paper, we present dynamically self-adjusting Gaussian processes by introducing E vent- T riggered K ernel A djustments in Gaussian process modelling (ETKA), a novel data stream modelling algorithm that can handle evolving and changing data distributions. To this end, we enhance the recently introduced Adjusting Kernel Search with a novel online change point detection method. Our experiments on simulated data with varying change point patterns suggest a broad applicability of ETKA. On real-world data, ETKA outperforms comparison partners that differ regarding the model adjustment and its refitting trigger in nine respective ten out of 14 cases. These results confirm ETKA’s ability to enable a more accurate and, in some settings, also more efficient data stream processing via Gaussian processes.
Related Topics
- Type
- book-chapter
- Language
- en
- Landing Page
- https://doi.org/10.1007/978-3-031-15791-2_10
- https://link.springer.com/content/pdf/10.1007/978-3-031-15791-2_10.pdf
- OA Status
- hybrid
- Cited By
- 4
- References
- 15
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4296195565
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4296195565Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/978-3-031-15791-2_10Digital Object Identifier
- Title
-
Dynamically Self-adjusting Gaussian Processes for Data Stream ModellingWork title
- Type
-
book-chapterOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-01-01Full publication date if available
- Authors
-
Jan David Hüwel, Florian Haselbeck, Dominik G. Grimm, Christian BeecksList of authors in order
- Landing page
-
https://doi.org/10.1007/978-3-031-15791-2_10Publisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/978-3-031-15791-2_10.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/978-3-031-15791-2_10.pdfDirect OA link when available
- Concepts
-
Computer science, Gaussian process, Data stream mining, Data stream, Kernel (algebra), Gaussian, Data mining, Process (computing), Point (geometry), Gaussian function, Algorithm, Mathematics, Physics, Quantum mechanics, Combinatorics, Telecommunications, Operating system, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2, 2023: 2Per-year citation counts (last 5 years)
- References (count)
-
15Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4296195565 |
|---|---|
| doi | https://doi.org/10.1007/978-3-031-15791-2_10 |
| ids.doi | https://doi.org/10.1007/978-3-031-15791-2_10 |
| ids.openalex | https://openalex.org/W4296195565 |
| fwci | 1.45759226 |
| type | book-chapter |
| title | Dynamically Self-adjusting Gaussian Processes for Data Stream Modelling |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 114 |
| biblio.first_page | 96 |
| topics[0].id | https://openalex.org/T12814 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9958999752998352 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Gaussian Processes and Bayesian Inference |
| topics[1].id | https://openalex.org/T12761 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9850999712944031 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Data Stream Mining Techniques |
| topics[2].id | https://openalex.org/T12205 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9721999764442444 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Time Series Analysis and Forecasting |
| is_xpac | False |
| apc_list.value | 5000 |
| apc_list.currency | EUR |
| apc_list.value_usd | 5392 |
| apc_paid.value | 5000 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 5392 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8637654185295105 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C61326573 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6876619458198547 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1496376 |
| concepts[1].display_name | Gaussian process |
| concepts[2].id | https://openalex.org/C89198739 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6716232299804688 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3079880 |
| concepts[2].display_name | Data stream mining |
| concepts[3].id | https://openalex.org/C2778484313 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6582140922546387 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1172540 |
| concepts[3].display_name | Data stream |
| concepts[4].id | https://openalex.org/C74193536 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5958921909332275 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q574844 |
| concepts[4].display_name | Kernel (algebra) |
| concepts[5].id | https://openalex.org/C163716315 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5752403736114502 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[5].display_name | Gaussian |
| concepts[6].id | https://openalex.org/C124101348 |
| concepts[6].level | 1 |
| concepts[6].score | 0.49651962518692017 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[6].display_name | Data mining |
| concepts[7].id | https://openalex.org/C98045186 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4480689465999603 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[7].display_name | Process (computing) |
| concepts[8].id | https://openalex.org/C28719098 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4382261037826538 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q44946 |
| concepts[8].display_name | Point (geometry) |
| concepts[9].id | https://openalex.org/C7218915 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4359048008918762 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1054475 |
| concepts[9].display_name | Gaussian function |
| concepts[10].id | https://openalex.org/C11413529 |
| concepts[10].level | 1 |
| concepts[10].score | 0.350739061832428 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[10].display_name | Algorithm |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.06460601091384888 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C62520636 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[13].display_name | Quantum mechanics |
| concepts[14].id | https://openalex.org/C114614502 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[14].display_name | Combinatorics |
| concepts[15].id | https://openalex.org/C76155785 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[15].display_name | Telecommunications |
| concepts[16].id | https://openalex.org/C111919701 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[16].display_name | Operating system |
| concepts[17].id | https://openalex.org/C2524010 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[17].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8637654185295105 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/gaussian-process |
| keywords[1].score | 0.6876619458198547 |
| keywords[1].display_name | Gaussian process |
| keywords[2].id | https://openalex.org/keywords/data-stream-mining |
| keywords[2].score | 0.6716232299804688 |
| keywords[2].display_name | Data stream mining |
| keywords[3].id | https://openalex.org/keywords/data-stream |
| keywords[3].score | 0.6582140922546387 |
| keywords[3].display_name | Data stream |
| keywords[4].id | https://openalex.org/keywords/kernel |
| keywords[4].score | 0.5958921909332275 |
| keywords[4].display_name | Kernel (algebra) |
| keywords[5].id | https://openalex.org/keywords/gaussian |
| keywords[5].score | 0.5752403736114502 |
| keywords[5].display_name | Gaussian |
| keywords[6].id | https://openalex.org/keywords/data-mining |
| keywords[6].score | 0.49651962518692017 |
| keywords[6].display_name | Data mining |
| keywords[7].id | https://openalex.org/keywords/process |
| keywords[7].score | 0.4480689465999603 |
| keywords[7].display_name | Process (computing) |
| keywords[8].id | https://openalex.org/keywords/point |
| keywords[8].score | 0.4382261037826538 |
| keywords[8].display_name | Point (geometry) |
| keywords[9].id | https://openalex.org/keywords/gaussian-function |
| keywords[9].score | 0.4359048008918762 |
| keywords[9].display_name | Gaussian function |
| keywords[10].id | https://openalex.org/keywords/algorithm |
| keywords[10].score | 0.350739061832428 |
| keywords[10].display_name | Algorithm |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.06460601091384888 |
| keywords[11].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1007/978-3-031-15791-2_10 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S106296714 |
| locations[0].source.issn | 0302-9743, 1611-3349 |
| locations[0].source.type | book series |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0302-9743 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Lecture notes in computer science |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/978-3-031-15791-2_10.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | book-chapter |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Lecture Notes in Computer Science |
| locations[0].landing_page_url | https://doi.org/10.1007/978-3-031-15791-2_10 |
| locations[1].id | pmh:oai:mediatum.ub.tum.de:node/1688835 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306400453 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | mediaTUM – the media and publications repository of the Technical University Munich (Technical University Munich) |
| locations[1].source.host_organization | https://openalex.org/I62916508 |
| locations[1].source.host_organization_name | Technical University of Munich |
| locations[1].source.host_organization_lineage | https://openalex.org/I62916508 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | bookpart |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://mediatum.ub.tum.de/1688835 |
| locations[2].id | pmh:oai:null:publica/437117 |
| locations[2].is_oa | False |
| locations[2].source | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | conference paper |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://publica.fraunhofer.de/handle/publica/437117 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5015859134 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4133-6232 |
| authorships[0].author.display_name | Jan David Hüwel |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I120691247 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Mathematics and Computer Science, University of Hagen, Hagen, Germany |
| authorships[0].institutions[0].id | https://openalex.org/I120691247 |
| authorships[0].institutions[0].ror | https://ror.org/04tkkr536 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I120691247 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | University of Hagen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jan David Hüwel |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Mathematics and Computer Science, University of Hagen, Hagen, Germany |
| authorships[1].author.id | https://openalex.org/A5028481992 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5702-376X |
| authorships[1].author.display_name | Florian Haselbeck |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I62916508 |
| authorships[1].affiliations[0].raw_affiliation_string | Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Bioinformatics, Straubing, Germany |
| authorships[1].institutions[0].id | https://openalex.org/I62916508 |
| authorships[1].institutions[0].ror | https://ror.org/02kkvpp62 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I62916508 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | Technical University of Munich |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Florian Haselbeck |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Bioinformatics, Straubing, Germany |
| authorships[2].author.id | https://openalex.org/A5009539507 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2085-4591 |
| authorships[2].author.display_name | Dominik G. Grimm |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I62916508 |
| authorships[2].affiliations[0].raw_affiliation_string | Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Bioinformatics, Straubing, Germany |
| authorships[2].institutions[0].id | https://openalex.org/I62916508 |
| authorships[2].institutions[0].ror | https://ror.org/02kkvpp62 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I62916508 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | Technical University of Munich |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Dominik G. Grimm |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Bioinformatics, Straubing, Germany |
| authorships[3].author.id | https://openalex.org/A5039809923 |
| authorships[3].author.orcid | https://orcid.org/0009-0000-9028-629X |
| authorships[3].author.display_name | Christian Beecks |
| authorships[3].countries | DE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I120691247 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Mathematics and Computer Science, University of Hagen, Hagen, Germany |
| authorships[3].institutions[0].id | https://openalex.org/I120691247 |
| authorships[3].institutions[0].ror | https://ror.org/04tkkr536 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I120691247 |
| authorships[3].institutions[0].country_code | DE |
| authorships[3].institutions[0].display_name | University of Hagen |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Christian Beecks |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Mathematics and Computer Science, University of Hagen, Hagen, Germany |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/978-3-031-15791-2_10.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Dynamically Self-adjusting Gaussian Processes for Data Stream Modelling |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12814 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9958999752998352 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Gaussian Processes and Bayesian Inference |
| related_works | https://openalex.org/W2106570241, https://openalex.org/W2107586730, https://openalex.org/W3046869667, https://openalex.org/W4361801939, https://openalex.org/W3207785250, https://openalex.org/W2958623481, https://openalex.org/W105155515, https://openalex.org/W2991818765, https://openalex.org/W2099577980, https://openalex.org/W4296195565 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1007/978-3-031-15791-2_10 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S106296714 |
| best_oa_location.source.issn | 0302-9743, 1611-3349 |
| best_oa_location.source.type | book series |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0302-9743 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Lecture notes in computer science |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/978-3-031-15791-2_10.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | book-chapter |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Lecture Notes in Computer Science |
| best_oa_location.landing_page_url | https://doi.org/10.1007/978-3-031-15791-2_10 |
| primary_location.id | doi:10.1007/978-3-031-15791-2_10 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S106296714 |
| primary_location.source.issn | 0302-9743, 1611-3349 |
| primary_location.source.type | book series |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0302-9743 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Lecture notes in computer science |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/978-3-031-15791-2_10.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | book-chapter |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Lecture Notes in Computer Science |
| primary_location.landing_page_url | https://doi.org/10.1007/978-3-031-15791-2_10 |
| publication_date | 2022-01-01 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W4213160724, https://openalex.org/W2515822248, https://openalex.org/W3135693966, https://openalex.org/W3094552456, https://openalex.org/W3160823469, https://openalex.org/W2040731319, https://openalex.org/W1494192115, https://openalex.org/W3202283044, https://openalex.org/W4200157301, https://openalex.org/W2144335970, https://openalex.org/W4205993808, https://openalex.org/W1950803081, https://openalex.org/W4249116379, https://openalex.org/W2909693411, https://openalex.org/W391985582 |
| referenced_works_count | 15 |
| abstract_inverted_index.A | 70 |
| abstract_inverted_index.E | 64 |
| abstract_inverted_index.K | 68 |
| abstract_inverted_index.T | 66 |
| abstract_inverted_index.a | 77, 103, 121, 158 |
| abstract_inverted_index.14 | 149 |
| abstract_inverted_index.In | 53 |
| abstract_inverted_index.On | 126 |
| abstract_inverted_index.To | 19, 91 |
| abstract_inverted_index.an | 21 |
| abstract_inverted_index.at | 27 |
| abstract_inverted_index.by | 62 |
| abstract_inverted_index.in | 6, 72, 143, 162 |
| abstract_inverted_index.of | 2, 48, 124, 148 |
| abstract_inverted_index.on | 112 |
| abstract_inverted_index.to | 34, 36, 156 |
| abstract_inverted_index.we | 56, 94 |
| abstract_inverted_index.For | 40 |
| abstract_inverted_index.One | 1 |
| abstract_inverted_index.Our | 110 |
| abstract_inverted_index.all | 28 |
| abstract_inverted_index.and | 87, 139 |
| abstract_inverted_index.are | 10, 32 |
| abstract_inverted_index.can | 84 |
| abstract_inverted_index.its | 140 |
| abstract_inverted_index.out | 147 |
| abstract_inverted_index.ten | 146 |
| abstract_inverted_index.the | 3, 46, 49, 96, 136 |
| abstract_inverted_index.via | 171 |
| abstract_inverted_index.ETKA | 129 |
| abstract_inverted_index.also | 165 |
| abstract_inverted_index.and, | 161 |
| abstract_inverted_index.data | 12, 17, 79, 89, 114, 168 |
| abstract_inverted_index.end, | 93 |
| abstract_inverted_index.more | 159, 166 |
| abstract_inverted_index.nine | 144 |
| abstract_inverted_index.some | 163 |
| abstract_inverted_index.such | 37 |
| abstract_inverted_index.that | 83, 133 |
| abstract_inverted_index.this | 43, 54, 92 |
| abstract_inverted_index.time | 7 |
| abstract_inverted_index.when | 15 |
| abstract_inverted_index.with | 102, 115 |
| abstract_inverted_index.ETKA. | 125 |
| abstract_inverted_index.These | 151 |
| abstract_inverted_index.adapt | 35 |
| abstract_inverted_index.broad | 122 |
| abstract_inverted_index.data, | 128 |
| abstract_inverted_index.ernel | 69 |
| abstract_inverted_index.major | 4 |
| abstract_inverted_index.might | 44 |
| abstract_inverted_index.model | 23, 30, 137 |
| abstract_inverted_index.novel | 78, 104 |
| abstract_inverted_index.point | 107, 118 |
| abstract_inverted_index.vent- | 65 |
| abstract_inverted_index.Kernel | 100 |
| abstract_inverted_index.Search | 101 |
| abstract_inverted_index.cases. | 150 |
| abstract_inverted_index.change | 106, 117 |
| abstract_inverted_index.differ | 134 |
| abstract_inverted_index.enable | 157 |
| abstract_inverted_index.ensure | 20 |
| abstract_inverted_index.handle | 85 |
| abstract_inverted_index.kernel | 51 |
| abstract_inverted_index.online | 105 |
| abstract_inverted_index.paper, | 55 |
| abstract_inverted_index.series | 8 |
| abstract_inverted_index.stream | 80, 169 |
| abstract_inverted_index.times, | 29 |
| abstract_inverted_index.useful | 25 |
| abstract_inverted_index.(ETKA), | 76 |
| abstract_inverted_index.ability | 155 |
| abstract_inverted_index.confirm | 153 |
| abstract_inverted_index.enhance | 95 |
| abstract_inverted_index.method. | 109 |
| abstract_inverted_index.present | 57 |
| abstract_inverted_index.process | 74 |
| abstract_inverted_index.require | 45 |
| abstract_inverted_index.results | 152 |
| abstract_inverted_index.suggest | 120 |
| abstract_inverted_index.trigger | 142 |
| abstract_inverted_index.varying | 116 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.ETKA’s | 154 |
| abstract_inverted_index.Gaussian | 41, 60, 73, 172 |
| abstract_inverted_index.accurate | 160 |
| abstract_inverted_index.analysis | 9 |
| abstract_inverted_index.changing | 11, 88 |
| abstract_inverted_index.evolving | 38, 86 |
| abstract_inverted_index.internal | 50 |
| abstract_inverted_index.partners | 132 |
| abstract_inverted_index.patterns | 119 |
| abstract_inverted_index.recently | 97 |
| abstract_inverted_index.required | 33 |
| abstract_inverted_index.riggered | 67 |
| abstract_inverted_index.streams. | 18, 39 |
| abstract_inverted_index.Adjusting | 99 |
| abstract_inverted_index.algorithm | 82 |
| abstract_inverted_index.detection | 108 |
| abstract_inverted_index.efficient | 167 |
| abstract_inverted_index.modelling | 75, 81 |
| abstract_inverted_index.processes | 61 |
| abstract_inverted_index.refitting | 141 |
| abstract_inverted_index.regarding | 135 |
| abstract_inverted_index.settings, | 164 |
| abstract_inverted_index.simulated | 113 |
| abstract_inverted_index.adaptation | 47 |
| abstract_inverted_index.adjustment | 138 |
| abstract_inverted_index.challenges | 5 |
| abstract_inverted_index.comparison | 131 |
| abstract_inverted_index.delivering | 24 |
| abstract_inverted_index.djustments | 71 |
| abstract_inverted_index.especially | 14 |
| abstract_inverted_index.introduced | 98 |
| abstract_inverted_index.processes, | 42 |
| abstract_inverted_index.processes. | 173 |
| abstract_inverted_index.processing | 16, 170 |
| abstract_inverted_index.real-world | 127 |
| abstract_inverted_index.respective | 145 |
| abstract_inverted_index.up-to-date | 22 |
| abstract_inverted_index.dynamically | 58 |
| abstract_inverted_index.experiments | 111 |
| abstract_inverted_index.expression. | 52 |
| abstract_inverted_index.introducing | 63 |
| abstract_inverted_index.outperforms | 130 |
| abstract_inverted_index.predictions | 26 |
| abstract_inverted_index.applicability | 123 |
| abstract_inverted_index.distributions, | 13 |
| abstract_inverted_index.distributions. | 90 |
| abstract_inverted_index.self-adjusting | 59 |
| abstract_inverted_index.reconfigurations | 31 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.83639035 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |