E2CB2former: Effecitve and Explainable Transformer for CB2 Receptor Ligand Activity Prediction Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2502.12186
Accurate prediction of CB2 receptor ligand activity is pivotal for advancing drug discovery targeting this receptor, which is implicated in inflammation, pain management, and neurodegenerative conditions. Although conventional machine learning and deep learning techniques have shown promise, their limited interpretability remains a significant barrier to rational drug design. In this work, we introduce CB2former, a framework that combines a Graph Convolutional Network with a Transformer architecture to predict CB2 receptor ligand activity. By leveraging the Transformer's self attention mechanism alongside the GCN's structural learning capability, CB2former not only enhances predictive performance but also offers insights into the molecular features underlying receptor activity. We benchmark CB2former against diverse baseline models including Random Forest, Support Vector Machine, K Nearest Neighbors, Gradient Boosting, Extreme Gradient Boosting, Multilayer Perceptron, Convolutional Neural Network, and Recurrent Neural Network and demonstrate its superior performance with an R squared of 0.685, an RMSE of 0.675, and an AUC of 0.940. Moreover, attention weight analysis reveals key molecular substructures influencing CB2 receptor activity, underscoring the model's potential as an interpretable AI tool for drug discovery. This ability to pinpoint critical molecular motifs can streamline virtual screening, guide lead optimization, and expedite therapeutic development. Overall, our results showcase the transformative potential of advanced AI approaches exemplified by CB2former in delivering both accurate predictions and actionable molecular insights, thus fostering interdisciplinary collaboration and innovation in drug discovery.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2502.12186
- https://arxiv.org/pdf/2502.12186
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407759237
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407759237Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2502.12186Digital Object Identifier
- Title
-
E2CB2former: Effecitve and Explainable Transformer for CB2 Receptor Ligand Activity PredictionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-15Full publication date if available
- Authors
-
Jiacheng Xie, Yuqi Ji, Linghuan Zeng, Xi Xiao, Gaofei Chen, Lijing Zhu, Joyanta Jyoti Mondal, Jiansheng ChenList of authors in order
- Landing page
-
https://arxiv.org/abs/2502.12186Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2502.12186Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2502.12186Direct OA link when available
- Concepts
-
Transformer, Computer science, Chemistry, Business, Engineering, Electrical engineering, VoltageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407759237 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2502.12186 |
| ids.doi | https://doi.org/10.48550/arxiv.2502.12186 |
| ids.openalex | https://openalex.org/W4407759237 |
| fwci | |
| type | preprint |
| title | E2CB2former: Effecitve and Explainable Transformer for CB2 Receptor Ligand Activity Prediction |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10211 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9779000282287598 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Computational Drug Discovery Methods |
| topics[1].id | https://openalex.org/T13702 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9182999730110168 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning in Healthcare |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C66322947 |
| concepts[0].level | 3 |
| concepts[0].score | 0.4923657178878784 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[0].display_name | Transformer |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.3772287964820862 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C185592680 |
| concepts[2].level | 0 |
| concepts[2].score | 0.35038232803344727 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[2].display_name | Chemistry |
| concepts[3].id | https://openalex.org/C144133560 |
| concepts[3].level | 0 |
| concepts[3].score | 0.32312577962875366 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[3].display_name | Business |
| concepts[4].id | https://openalex.org/C127413603 |
| concepts[4].level | 0 |
| concepts[4].score | 0.13018786907196045 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[4].display_name | Engineering |
| concepts[5].id | https://openalex.org/C119599485 |
| concepts[5].level | 1 |
| concepts[5].score | 0.12663930654525757 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[5].display_name | Electrical engineering |
| concepts[6].id | https://openalex.org/C165801399 |
| concepts[6].level | 2 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[6].display_name | Voltage |
| keywords[0].id | https://openalex.org/keywords/transformer |
| keywords[0].score | 0.4923657178878784 |
| keywords[0].display_name | Transformer |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.3772287964820862 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/chemistry |
| keywords[2].score | 0.35038232803344727 |
| keywords[2].display_name | Chemistry |
| keywords[3].id | https://openalex.org/keywords/business |
| keywords[3].score | 0.32312577962875366 |
| keywords[3].display_name | Business |
| keywords[4].id | https://openalex.org/keywords/engineering |
| keywords[4].score | 0.13018786907196045 |
| keywords[4].display_name | Engineering |
| keywords[5].id | https://openalex.org/keywords/electrical-engineering |
| keywords[5].score | 0.12663930654525757 |
| keywords[5].display_name | Electrical engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2502.12186 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2502.12186 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2502.12186 |
| locations[1].id | doi:10.48550/arxiv.2502.12186 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2502.12186 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5028377983 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7136-1140 |
| authorships[0].author.display_name | Jiacheng Xie |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xie, Jiacheng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5057858080 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1151-2322 |
| authorships[1].author.display_name | Yuqi Ji |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ji, Yingrui |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5116335649 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Linghuan Zeng |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zeng, Linghuan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5047737162 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6921-0669 |
| authorships[3].author.display_name | Xi Xiao |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xiao, Xi |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5104336932 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Gaofei Chen |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Chen, Gaofei |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5101091731 |
| authorships[5].author.orcid | https://orcid.org/0009-0002-7107-2880 |
| authorships[5].author.display_name | Lijing Zhu |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Zhu, Lijing |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5116335650 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Joyanta Jyoti Mondal |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Mondal, Joyanta Jyoti |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5100668653 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-2040-7938 |
| authorships[7].author.display_name | Jiansheng Chen |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Chen, Jiansheng |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2502.12186 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | E2CB2former: Effecitve and Explainable Transformer for CB2 Receptor Ligand Activity Prediction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10211 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9779000282287598 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Computational Drug Discovery Methods |
| related_works | https://openalex.org/W4387497383, https://openalex.org/W2948807893, https://openalex.org/W2899084033, https://openalex.org/W2778153218, https://openalex.org/W2748952813, https://openalex.org/W1531601525, https://openalex.org/W4391375266, https://openalex.org/W2078814861, https://openalex.org/W2527526854, https://openalex.org/W1976181487 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2502.12186 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2502.12186 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2502.12186 |
| primary_location.id | pmh:oai:arXiv.org:2502.12186 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2502.12186 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2502.12186 |
| publication_date | 2025-02-15 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.K | 115 |
| abstract_inverted_index.R | 139 |
| abstract_inverted_index.a | 41, 54, 58, 63 |
| abstract_inverted_index.AI | 171, 203 |
| abstract_inverted_index.By | 72 |
| abstract_inverted_index.In | 48 |
| abstract_inverted_index.We | 102 |
| abstract_inverted_index.an | 138, 143, 148, 169 |
| abstract_inverted_index.as | 168 |
| abstract_inverted_index.by | 206 |
| abstract_inverted_index.in | 19, 208, 223 |
| abstract_inverted_index.is | 7, 17 |
| abstract_inverted_index.of | 2, 141, 145, 150, 201 |
| abstract_inverted_index.to | 44, 66, 178 |
| abstract_inverted_index.we | 51 |
| abstract_inverted_index.AUC | 149 |
| abstract_inverted_index.CB2 | 3, 68, 161 |
| abstract_inverted_index.and | 23, 30, 128, 132, 147, 190, 213, 221 |
| abstract_inverted_index.but | 91 |
| abstract_inverted_index.can | 183 |
| abstract_inverted_index.for | 9, 173 |
| abstract_inverted_index.its | 134 |
| abstract_inverted_index.key | 157 |
| abstract_inverted_index.not | 86 |
| abstract_inverted_index.our | 195 |
| abstract_inverted_index.the | 74, 80, 96, 165, 198 |
| abstract_inverted_index.RMSE | 144 |
| abstract_inverted_index.This | 176 |
| abstract_inverted_index.also | 92 |
| abstract_inverted_index.both | 210 |
| abstract_inverted_index.deep | 31 |
| abstract_inverted_index.drug | 11, 46, 174, 224 |
| abstract_inverted_index.have | 34 |
| abstract_inverted_index.into | 95 |
| abstract_inverted_index.lead | 188 |
| abstract_inverted_index.only | 87 |
| abstract_inverted_index.pain | 21 |
| abstract_inverted_index.self | 76 |
| abstract_inverted_index.that | 56 |
| abstract_inverted_index.this | 14, 49 |
| abstract_inverted_index.thus | 217 |
| abstract_inverted_index.tool | 172 |
| abstract_inverted_index.with | 62, 137 |
| abstract_inverted_index.GCN's | 81 |
| abstract_inverted_index.Graph | 59 |
| abstract_inverted_index.guide | 187 |
| abstract_inverted_index.shown | 35 |
| abstract_inverted_index.their | 37 |
| abstract_inverted_index.which | 16 |
| abstract_inverted_index.work, | 50 |
| abstract_inverted_index.0.675, | 146 |
| abstract_inverted_index.0.685, | 142 |
| abstract_inverted_index.0.940. | 151 |
| abstract_inverted_index.Neural | 126, 130 |
| abstract_inverted_index.Random | 110 |
| abstract_inverted_index.Vector | 113 |
| abstract_inverted_index.ligand | 5, 70 |
| abstract_inverted_index.models | 108 |
| abstract_inverted_index.motifs | 182 |
| abstract_inverted_index.offers | 93 |
| abstract_inverted_index.weight | 154 |
| abstract_inverted_index.Extreme | 120 |
| abstract_inverted_index.Forest, | 111 |
| abstract_inverted_index.Nearest | 116 |
| abstract_inverted_index.Network | 61, 131 |
| abstract_inverted_index.Support | 112 |
| abstract_inverted_index.ability | 177 |
| abstract_inverted_index.against | 105 |
| abstract_inverted_index.barrier | 43 |
| abstract_inverted_index.design. | 47 |
| abstract_inverted_index.diverse | 106 |
| abstract_inverted_index.limited | 38 |
| abstract_inverted_index.machine | 28 |
| abstract_inverted_index.model's | 166 |
| abstract_inverted_index.pivotal | 8 |
| abstract_inverted_index.predict | 67 |
| abstract_inverted_index.remains | 40 |
| abstract_inverted_index.results | 196 |
| abstract_inverted_index.reveals | 156 |
| abstract_inverted_index.squared | 140 |
| abstract_inverted_index.virtual | 185 |
| abstract_inverted_index.Accurate | 0 |
| abstract_inverted_index.Although | 26 |
| abstract_inverted_index.Gradient | 118, 121 |
| abstract_inverted_index.Machine, | 114 |
| abstract_inverted_index.Network, | 127 |
| abstract_inverted_index.Overall, | 194 |
| abstract_inverted_index.accurate | 211 |
| abstract_inverted_index.activity | 6 |
| abstract_inverted_index.advanced | 202 |
| abstract_inverted_index.analysis | 155 |
| abstract_inverted_index.baseline | 107 |
| abstract_inverted_index.combines | 57 |
| abstract_inverted_index.critical | 180 |
| abstract_inverted_index.enhances | 88 |
| abstract_inverted_index.expedite | 191 |
| abstract_inverted_index.features | 98 |
| abstract_inverted_index.insights | 94 |
| abstract_inverted_index.learning | 29, 32, 83 |
| abstract_inverted_index.pinpoint | 179 |
| abstract_inverted_index.promise, | 36 |
| abstract_inverted_index.rational | 45 |
| abstract_inverted_index.receptor | 4, 69, 100, 162 |
| abstract_inverted_index.showcase | 197 |
| abstract_inverted_index.superior | 135 |
| abstract_inverted_index.Boosting, | 119, 122 |
| abstract_inverted_index.CB2former | 85, 104, 207 |
| abstract_inverted_index.Moreover, | 152 |
| abstract_inverted_index.Recurrent | 129 |
| abstract_inverted_index.activity, | 163 |
| abstract_inverted_index.activity. | 71, 101 |
| abstract_inverted_index.advancing | 10 |
| abstract_inverted_index.alongside | 79 |
| abstract_inverted_index.attention | 77, 153 |
| abstract_inverted_index.benchmark | 103 |
| abstract_inverted_index.discovery | 12 |
| abstract_inverted_index.fostering | 218 |
| abstract_inverted_index.framework | 55 |
| abstract_inverted_index.including | 109 |
| abstract_inverted_index.insights, | 216 |
| abstract_inverted_index.introduce | 52 |
| abstract_inverted_index.mechanism | 78 |
| abstract_inverted_index.molecular | 97, 158, 181, 215 |
| abstract_inverted_index.potential | 167, 200 |
| abstract_inverted_index.receptor, | 15 |
| abstract_inverted_index.targeting | 13 |
| abstract_inverted_index.CB2former, | 53 |
| abstract_inverted_index.Multilayer | 123 |
| abstract_inverted_index.Neighbors, | 117 |
| abstract_inverted_index.actionable | 214 |
| abstract_inverted_index.approaches | 204 |
| abstract_inverted_index.delivering | 209 |
| abstract_inverted_index.discovery. | 175, 225 |
| abstract_inverted_index.implicated | 18 |
| abstract_inverted_index.innovation | 222 |
| abstract_inverted_index.leveraging | 73 |
| abstract_inverted_index.prediction | 1 |
| abstract_inverted_index.predictive | 89 |
| abstract_inverted_index.screening, | 186 |
| abstract_inverted_index.streamline | 184 |
| abstract_inverted_index.structural | 82 |
| abstract_inverted_index.techniques | 33 |
| abstract_inverted_index.underlying | 99 |
| abstract_inverted_index.Perceptron, | 124 |
| abstract_inverted_index.Transformer | 64 |
| abstract_inverted_index.capability, | 84 |
| abstract_inverted_index.conditions. | 25 |
| abstract_inverted_index.demonstrate | 133 |
| abstract_inverted_index.exemplified | 205 |
| abstract_inverted_index.influencing | 160 |
| abstract_inverted_index.management, | 22 |
| abstract_inverted_index.performance | 90, 136 |
| abstract_inverted_index.predictions | 212 |
| abstract_inverted_index.significant | 42 |
| abstract_inverted_index.therapeutic | 192 |
| abstract_inverted_index.architecture | 65 |
| abstract_inverted_index.conventional | 27 |
| abstract_inverted_index.development. | 193 |
| abstract_inverted_index.underscoring | 164 |
| abstract_inverted_index.Convolutional | 60, 125 |
| abstract_inverted_index.Transformer's | 75 |
| abstract_inverted_index.collaboration | 220 |
| abstract_inverted_index.inflammation, | 20 |
| abstract_inverted_index.interpretable | 170 |
| abstract_inverted_index.optimization, | 189 |
| abstract_inverted_index.substructures | 159 |
| abstract_inverted_index.transformative | 199 |
| abstract_inverted_index.interpretability | 39 |
| abstract_inverted_index.interdisciplinary | 219 |
| abstract_inverted_index.neurodegenerative | 24 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile |