E2Rank: Your Text Embedding can Also be an Effective and Efficient Listwise Reranker Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2510.22733
Text embedding models serve as a fundamental component in real-world search applications. By mapping queries and documents into a shared embedding space, they deliver competitive retrieval performance with high efficiency. However, their ranking fidelity remains limited compared to dedicated rerankers, especially recent LLM-based listwise rerankers, which capture fine-grained query-document and document-document interactions. In this paper, we propose a simple yet effective unified framework E2Rank, means Efficient Embedding-based Ranking (also means Embedding-to-Rank), which extends a single text embedding model to perform both high-quality retrieval and listwise reranking through continued training under a listwise ranking objective, thereby achieving strong effectiveness with remarkable efficiency. By applying cosine similarity between the query and document embeddings as a unified ranking function, the listwise ranking prompt, which is constructed from the original query and its candidate documents, serves as an enhanced query enriched with signals from the top-K documents, akin to pseudo-relevance feedback (PRF) in traditional retrieval models. This design preserves the efficiency and representational quality of the base embedding model while significantly improving its reranking performance. Empirically, E2Rank achieves state-of-the-art results on the BEIR reranking benchmark and demonstrates competitive performance on the reasoning-intensive BRIGHT benchmark, with very low reranking latency. We also show that the ranking training process improves embedding performance on the MTEB benchmark. Our findings indicate that a single embedding model can effectively unify retrieval and reranking, offering both computational efficiency and competitive ranking accuracy.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2510.22733
- https://arxiv.org/pdf/2510.22733
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415909451
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415909451Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2510.22733Digital Object Identifier
- Title
-
E2Rank: Your Text Embedding can Also be an Effective and Efficient Listwise RerankerWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-26Full publication date if available
- Authors
-
Qi Liu, Yanzhao Zhang, Mingxin Li, Dingkun Long, Pengjun Xie, Jiaxin MaoList of authors in order
- Landing page
-
https://arxiv.org/abs/2510.22733Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2510.22733Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2510.22733Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415909451 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2510.22733 |
| ids.doi | https://doi.org/10.48550/arxiv.2510.22733 |
| ids.openalex | https://openalex.org/W4415909451 |
| fwci | |
| type | preprint |
| title | E2Rank: Your Text Embedding can Also be an Effective and Efficient Listwise Reranker |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2510.22733 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2510.22733 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2510.22733 |
| locations[1].id | doi:10.48550/arxiv.2510.22733 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2510.22733 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101600614 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8485-3582 |
| authorships[0].author.display_name | Qi Liu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Liu, Qi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5103114439 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2894-4727 |
| authorships[1].author.display_name | Yanzhao Zhang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhang, Yanzhao |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100674539 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7829-2937 |
| authorships[2].author.display_name | Mingxin Li |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Li, Mingxin |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5049484480 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6570-9406 |
| authorships[3].author.display_name | Dingkun Long |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Long, Dingkun |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5005535444 |
| authorships[4].author.orcid | https://orcid.org/0009-0004-8412-359X |
| authorships[4].author.display_name | Pengjun Xie |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Xie, Pengjun |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5072119199 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-9257-5498 |
| authorships[5].author.display_name | Jiaxin Mao |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Mao, Jiaxin |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2510.22733 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-29T00:00:00 |
| display_name | E2Rank: Your Text Embedding can Also be an Effective and Efficient Listwise Reranker |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2510.22733 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2510.22733 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2510.22733 |
| primary_location.id | pmh:oai:arXiv.org:2510.22733 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2510.22733 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2510.22733 |
| publication_date | 2025-10-26 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 5, 18, 57, 73, 90, 112, 214 |
| abstract_inverted_index.By | 12, 101 |
| abstract_inverted_index.In | 52 |
| abstract_inverted_index.We | 195 |
| abstract_inverted_index.an | 133 |
| abstract_inverted_index.as | 4, 111, 132 |
| abstract_inverted_index.in | 8, 148 |
| abstract_inverted_index.is | 121 |
| abstract_inverted_index.of | 160 |
| abstract_inverted_index.on | 176, 185, 206 |
| abstract_inverted_index.to | 37, 78, 144 |
| abstract_inverted_index.we | 55 |
| abstract_inverted_index.Our | 210 |
| abstract_inverted_index.and | 15, 49, 83, 108, 127, 157, 181, 222, 228 |
| abstract_inverted_index.can | 218 |
| abstract_inverted_index.its | 128, 168 |
| abstract_inverted_index.low | 192 |
| abstract_inverted_index.the | 106, 116, 124, 140, 155, 161, 177, 186, 199, 207 |
| abstract_inverted_index.yet | 59 |
| abstract_inverted_index.BEIR | 178 |
| abstract_inverted_index.MTEB | 208 |
| abstract_inverted_index.Text | 0 |
| abstract_inverted_index.This | 152 |
| abstract_inverted_index.akin | 143 |
| abstract_inverted_index.also | 196 |
| abstract_inverted_index.base | 162 |
| abstract_inverted_index.both | 80, 225 |
| abstract_inverted_index.from | 123, 139 |
| abstract_inverted_index.high | 28 |
| abstract_inverted_index.into | 17 |
| abstract_inverted_index.show | 197 |
| abstract_inverted_index.text | 75 |
| abstract_inverted_index.that | 198, 213 |
| abstract_inverted_index.they | 22 |
| abstract_inverted_index.this | 53 |
| abstract_inverted_index.very | 191 |
| abstract_inverted_index.with | 27, 98, 137, 190 |
| abstract_inverted_index.(PRF) | 147 |
| abstract_inverted_index.(also | 68 |
| abstract_inverted_index.means | 64, 69 |
| abstract_inverted_index.model | 77, 164, 217 |
| abstract_inverted_index.query | 107, 126, 135 |
| abstract_inverted_index.serve | 3 |
| abstract_inverted_index.their | 31 |
| abstract_inverted_index.top-K | 141 |
| abstract_inverted_index.under | 89 |
| abstract_inverted_index.unify | 220 |
| abstract_inverted_index.which | 45, 71, 120 |
| abstract_inverted_index.while | 165 |
| abstract_inverted_index.BRIGHT | 188 |
| abstract_inverted_index.E2Rank | 172 |
| abstract_inverted_index.cosine | 103 |
| abstract_inverted_index.design | 153 |
| abstract_inverted_index.models | 2 |
| abstract_inverted_index.paper, | 54 |
| abstract_inverted_index.recent | 41 |
| abstract_inverted_index.search | 10 |
| abstract_inverted_index.serves | 131 |
| abstract_inverted_index.shared | 19 |
| abstract_inverted_index.simple | 58 |
| abstract_inverted_index.single | 74, 215 |
| abstract_inverted_index.space, | 21 |
| abstract_inverted_index.strong | 96 |
| abstract_inverted_index.E2Rank, | 63 |
| abstract_inverted_index.Ranking | 67 |
| abstract_inverted_index.between | 105 |
| abstract_inverted_index.capture | 46 |
| abstract_inverted_index.deliver | 23 |
| abstract_inverted_index.extends | 72 |
| abstract_inverted_index.limited | 35 |
| abstract_inverted_index.mapping | 13 |
| abstract_inverted_index.models. | 151 |
| abstract_inverted_index.perform | 79 |
| abstract_inverted_index.process | 202 |
| abstract_inverted_index.prompt, | 119 |
| abstract_inverted_index.propose | 56 |
| abstract_inverted_index.quality | 159 |
| abstract_inverted_index.queries | 14 |
| abstract_inverted_index.ranking | 32, 92, 114, 118, 200, 230 |
| abstract_inverted_index.remains | 34 |
| abstract_inverted_index.results | 175 |
| abstract_inverted_index.signals | 138 |
| abstract_inverted_index.thereby | 94 |
| abstract_inverted_index.through | 86 |
| abstract_inverted_index.unified | 61, 113 |
| abstract_inverted_index.However, | 30 |
| abstract_inverted_index.achieves | 173 |
| abstract_inverted_index.applying | 102 |
| abstract_inverted_index.compared | 36 |
| abstract_inverted_index.document | 109 |
| abstract_inverted_index.enhanced | 134 |
| abstract_inverted_index.enriched | 136 |
| abstract_inverted_index.feedback | 146 |
| abstract_inverted_index.fidelity | 33 |
| abstract_inverted_index.findings | 211 |
| abstract_inverted_index.improves | 203 |
| abstract_inverted_index.indicate | 212 |
| abstract_inverted_index.latency. | 194 |
| abstract_inverted_index.listwise | 43, 84, 91, 117 |
| abstract_inverted_index.offering | 224 |
| abstract_inverted_index.original | 125 |
| abstract_inverted_index.training | 88, 201 |
| abstract_inverted_index.Efficient | 65 |
| abstract_inverted_index.LLM-based | 42 |
| abstract_inverted_index.accuracy. | 231 |
| abstract_inverted_index.achieving | 95 |
| abstract_inverted_index.benchmark | 180 |
| abstract_inverted_index.candidate | 129 |
| abstract_inverted_index.component | 7 |
| abstract_inverted_index.continued | 87 |
| abstract_inverted_index.dedicated | 38 |
| abstract_inverted_index.documents | 16 |
| abstract_inverted_index.effective | 60 |
| abstract_inverted_index.embedding | 1, 20, 76, 163, 204, 216 |
| abstract_inverted_index.framework | 62 |
| abstract_inverted_index.function, | 115 |
| abstract_inverted_index.improving | 167 |
| abstract_inverted_index.preserves | 154 |
| abstract_inverted_index.reranking | 85, 169, 179, 193 |
| abstract_inverted_index.retrieval | 25, 82, 150, 221 |
| abstract_inverted_index.benchmark, | 189 |
| abstract_inverted_index.benchmark. | 209 |
| abstract_inverted_index.documents, | 130, 142 |
| abstract_inverted_index.efficiency | 156, 227 |
| abstract_inverted_index.embeddings | 110 |
| abstract_inverted_index.especially | 40 |
| abstract_inverted_index.objective, | 93 |
| abstract_inverted_index.real-world | 9 |
| abstract_inverted_index.remarkable | 99 |
| abstract_inverted_index.rerankers, | 39, 44 |
| abstract_inverted_index.reranking, | 223 |
| abstract_inverted_index.similarity | 104 |
| abstract_inverted_index.competitive | 24, 183, 229 |
| abstract_inverted_index.constructed | 122 |
| abstract_inverted_index.effectively | 219 |
| abstract_inverted_index.efficiency. | 29, 100 |
| abstract_inverted_index.fundamental | 6 |
| abstract_inverted_index.performance | 26, 184, 205 |
| abstract_inverted_index.traditional | 149 |
| abstract_inverted_index.Empirically, | 171 |
| abstract_inverted_index.demonstrates | 182 |
| abstract_inverted_index.fine-grained | 47 |
| abstract_inverted_index.high-quality | 81 |
| abstract_inverted_index.performance. | 170 |
| abstract_inverted_index.applications. | 11 |
| abstract_inverted_index.computational | 226 |
| abstract_inverted_index.effectiveness | 97 |
| abstract_inverted_index.interactions. | 51 |
| abstract_inverted_index.significantly | 166 |
| abstract_inverted_index.query-document | 48 |
| abstract_inverted_index.Embedding-based | 66 |
| abstract_inverted_index.pseudo-relevance | 145 |
| abstract_inverted_index.representational | 158 |
| abstract_inverted_index.state-of-the-art | 174 |
| abstract_inverted_index.document-document | 50 |
| abstract_inverted_index.Embedding-to-Rank), | 70 |
| abstract_inverted_index.reasoning-intensive | 187 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |