Early Anomalus Action Detection in Surveillance Video Using MRCNN-LSTM Classification Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48084/etasr.10656
Public space monitoring systems are critical for observing typical human behavior and detecting abnormal activities, especially in high-security environments. With the rise in public space thefts, there is a growing need for intelligent systems capable of detecting suspicious movements early enough to prevent criminal acts. Although Convolutional Neural Networks (CNNs) are widely used in image classification, they are inadequate to differentiate between abnormal and normal behavior and identify criminal activity in its early stage. To overcome these limitations, this study proposes a new hybrid model that combines Mask R-CNN (MRCNN) with Long Short-Term Memory (LSTM) networks for accurate object detection, tracking, and sequential behavior analysis. The main contribution of this study is a multistage anomaly detection pipeline that involves frame conversion, contrast enhancement, background removal, object tracking, and feature extraction. The MRCNN-LSTM framework can extract both spatial and temporal characteristics to allow precise early-stage anomaly detection. Thorough testing on three benchmarking datasets, UCF Crime, Snatch1.0, and CUHK, exhibited excellent performance, with a 93.6% accuracy for the UCF Crime dataset. Performance metrics such as observation ratio and time duration were used to assess the responsiveness and effectiveness of the system in real-time surveillance scenarios. This research advances the field of intelligent surveillance by enabling proactive threat mitigation through the early and precise detection of anomalous behavior.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.48084/etasr.10656
- https://etasr.com/index.php/ETASR/article/download/10656/5351
- OA Status
- gold
- References
- 37
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412879889
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412879889Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48084/etasr.10656Digital Object Identifier
- Title
-
Early Anomalus Action Detection in Surveillance Video Using MRCNN-LSTM ClassificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-02Full publication date if available
- Authors
-
D. Manju, Kailash Kumar, Movva Pavani, Rajesh Verma, Anand Kumar Saraswathi Rathod, P. Nirmal Kumar, V. S. N. Murthy, B. MohanList of authors in order
- Landing page
-
https://doi.org/10.48084/etasr.10656Publisher landing page
- PDF URL
-
https://etasr.com/index.php/ETASR/article/download/10656/5351Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://etasr.com/index.php/ETASR/article/download/10656/5351Direct OA link when available
- Concepts
-
Action (physics), Artificial intelligence, Computer science, Pattern recognition (psychology), Remote sensing, Computer vision, Geography, Physics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
37Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412879889 |
|---|---|
| doi | https://doi.org/10.48084/etasr.10656 |
| ids.doi | https://doi.org/10.48084/etasr.10656 |
| ids.openalex | https://openalex.org/W4412879889 |
| fwci | 0.0 |
| type | article |
| title | Early Anomalus Action Detection in Surveillance Video Using MRCNN-LSTM Classification |
| biblio.issue | 4 |
| biblio.volume | 15 |
| biblio.last_page | 25676 |
| biblio.first_page | 25668 |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| topics[1].id | https://openalex.org/T10400 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9991000294685364 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Network Security and Intrusion Detection |
| topics[2].id | https://openalex.org/T11241 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9850999712944031 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Advanced Malware Detection Techniques |
| is_xpac | False |
| apc_list.value | 400 |
| apc_list.currency | EUR |
| apc_list.value_usd | 431 |
| apc_paid.value | 400 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 431 |
| concepts[0].id | https://openalex.org/C2780791683 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5904425382614136 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q846785 |
| concepts[0].display_name | Action (physics) |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5168840885162354 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.49362313747406006 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.3795272707939148 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C62649853 |
| concepts[4].level | 1 |
| concepts[4].score | 0.372997522354126 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[4].display_name | Remote sensing |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3602268099784851 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| concepts[6].id | https://openalex.org/C205649164 |
| concepts[6].level | 0 |
| concepts[6].score | 0.26897183060646057 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[6].display_name | Geography |
| concepts[7].id | https://openalex.org/C121332964 |
| concepts[7].level | 0 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[7].display_name | Physics |
| concepts[8].id | https://openalex.org/C62520636 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[8].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/action |
| keywords[0].score | 0.5904425382614136 |
| keywords[0].display_name | Action (physics) |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.5168840885162354 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.49362313747406006 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.3795272707939148 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/remote-sensing |
| keywords[4].score | 0.372997522354126 |
| keywords[4].display_name | Remote sensing |
| keywords[5].id | https://openalex.org/keywords/computer-vision |
| keywords[5].score | 0.3602268099784851 |
| keywords[5].display_name | Computer vision |
| keywords[6].id | https://openalex.org/keywords/geography |
| keywords[6].score | 0.26897183060646057 |
| keywords[6].display_name | Geography |
| language | en |
| locations[0].id | doi:10.48084/etasr.10656 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2737646863 |
| locations[0].source.issn | 1792-8036, 2241-4487 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1792-8036 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Engineering Technology & Applied Science Research |
| locations[0].source.host_organization | https://openalex.org/P4310318068 |
| locations[0].source.host_organization_name | Engineering, Technology & Applied Science Research |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310318068 |
| locations[0].source.host_organization_lineage_names | Engineering, Technology & Applied Science Research |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://etasr.com/index.php/ETASR/article/download/10656/5351 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Engineering, Technology & Applied Science Research |
| locations[0].landing_page_url | https://doi.org/10.48084/etasr.10656 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5069019833 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | D. Manju |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | D. Manju |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5022567987 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8613-5835 |
| authorships[1].author.display_name | Kailash Kumar |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kishore K. Kumar |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5010181544 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1987-9185 |
| authorships[2].author.display_name | Movva Pavani |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Movva Pavani |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101482251 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7016-2361 |
| authorships[3].author.display_name | Rajesh Verma |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Rajesh Kumar Verma |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5112936819 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Anand Kumar Saraswathi Rathod |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Anand Kumar Saraswathi Rathod |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5111881316 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | P. Nirmal Kumar |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Pavan N. V. S. Kumar |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5014984875 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | V. S. N. Murthy |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | V. S. N. Murthy |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5081371082 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | B. Mohan |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Bh. Krishna Mohan |
| authorships[7].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://etasr.com/index.php/ETASR/article/download/10656/5351 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Early Anomalus Action Detection in Surveillance Video Using MRCNN-LSTM Classification |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| related_works | https://openalex.org/W2772917594, https://openalex.org/W2036807459, https://openalex.org/W2058170566, https://openalex.org/W2755342338, https://openalex.org/W2166024367, https://openalex.org/W3116076068, https://openalex.org/W2229312674, https://openalex.org/W2951359407, https://openalex.org/W2079911747, https://openalex.org/W1969923398 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.48084/etasr.10656 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2737646863 |
| best_oa_location.source.issn | 1792-8036, 2241-4487 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1792-8036 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Engineering Technology & Applied Science Research |
| best_oa_location.source.host_organization | https://openalex.org/P4310318068 |
| best_oa_location.source.host_organization_name | Engineering, Technology & Applied Science Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310318068 |
| best_oa_location.source.host_organization_lineage_names | Engineering, Technology & Applied Science Research |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://etasr.com/index.php/ETASR/article/download/10656/5351 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Engineering, Technology & Applied Science Research |
| best_oa_location.landing_page_url | https://doi.org/10.48084/etasr.10656 |
| primary_location.id | doi:10.48084/etasr.10656 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2737646863 |
| primary_location.source.issn | 1792-8036, 2241-4487 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1792-8036 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Engineering Technology & Applied Science Research |
| primary_location.source.host_organization | https://openalex.org/P4310318068 |
| primary_location.source.host_organization_name | Engineering, Technology & Applied Science Research |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310318068 |
| primary_location.source.host_organization_lineage_names | Engineering, Technology & Applied Science Research |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://etasr.com/index.php/ETASR/article/download/10656/5351 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Engineering, Technology & Applied Science Research |
| primary_location.landing_page_url | https://doi.org/10.48084/etasr.10656 |
| publication_date | 2025-08-02 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3089028909, https://openalex.org/W2790231083, https://openalex.org/W3099971460, https://openalex.org/W3044735541, https://openalex.org/W3127712067, https://openalex.org/W3180026872, https://openalex.org/W2803674491, https://openalex.org/W4313145294, https://openalex.org/W4293221722, https://openalex.org/W2984610006, https://openalex.org/W3012236414, https://openalex.org/W3005942854, https://openalex.org/W2987579720, https://openalex.org/W4312875565, https://openalex.org/W4289537725, https://openalex.org/W1957718552, https://openalex.org/W2330987084, https://openalex.org/W2963795951, https://openalex.org/W2540481276, https://openalex.org/W2766042539, https://openalex.org/W6751494907, https://openalex.org/W6948064553, https://openalex.org/W2803622880, https://openalex.org/W3037564611, https://openalex.org/W2247983461, https://openalex.org/W2003644094, https://openalex.org/W3129798121, https://openalex.org/W3208123866, https://openalex.org/W4226474162, https://openalex.org/W3168873038, https://openalex.org/W3015832418, https://openalex.org/W2783882151, https://openalex.org/W4387757641, https://openalex.org/W3165008040, https://openalex.org/W4409173827, https://openalex.org/W3015075698, https://openalex.org/W3129166376 |
| referenced_works_count | 37 |
| abstract_inverted_index.a | 28, 81, 112, 161 |
| abstract_inverted_index.To | 74 |
| abstract_inverted_index.as | 172 |
| abstract_inverted_index.by | 201 |
| abstract_inverted_index.in | 16, 22, 53, 70, 189 |
| abstract_inverted_index.is | 27, 111 |
| abstract_inverted_index.of | 35, 108, 186, 198, 212 |
| abstract_inverted_index.on | 148 |
| abstract_inverted_index.to | 41, 59, 140, 180 |
| abstract_inverted_index.The | 105, 130 |
| abstract_inverted_index.UCF | 152, 166 |
| abstract_inverted_index.and | 11, 63, 66, 101, 127, 137, 155, 175, 184, 209 |
| abstract_inverted_index.are | 4, 50, 57 |
| abstract_inverted_index.can | 133 |
| abstract_inverted_index.for | 6, 31, 96, 164 |
| abstract_inverted_index.its | 71 |
| abstract_inverted_index.new | 82 |
| abstract_inverted_index.the | 20, 165, 182, 187, 196, 207 |
| abstract_inverted_index.Long | 91 |
| abstract_inverted_index.Mask | 87 |
| abstract_inverted_index.This | 193 |
| abstract_inverted_index.With | 19 |
| abstract_inverted_index.both | 135 |
| abstract_inverted_index.main | 106 |
| abstract_inverted_index.need | 30 |
| abstract_inverted_index.rise | 21 |
| abstract_inverted_index.such | 171 |
| abstract_inverted_index.that | 85, 117 |
| abstract_inverted_index.they | 56 |
| abstract_inverted_index.this | 78, 109 |
| abstract_inverted_index.time | 176 |
| abstract_inverted_index.used | 52, 179 |
| abstract_inverted_index.were | 178 |
| abstract_inverted_index.with | 90, 160 |
| abstract_inverted_index.93.6% | 162 |
| abstract_inverted_index.CUHK, | 156 |
| abstract_inverted_index.Crime | 167 |
| abstract_inverted_index.R-CNN | 88 |
| abstract_inverted_index.acts. | 44 |
| abstract_inverted_index.allow | 141 |
| abstract_inverted_index.early | 39, 72, 208 |
| abstract_inverted_index.field | 197 |
| abstract_inverted_index.frame | 119 |
| abstract_inverted_index.human | 9 |
| abstract_inverted_index.image | 54 |
| abstract_inverted_index.model | 84 |
| abstract_inverted_index.ratio | 174 |
| abstract_inverted_index.space | 1, 24 |
| abstract_inverted_index.study | 79, 110 |
| abstract_inverted_index.there | 26 |
| abstract_inverted_index.these | 76 |
| abstract_inverted_index.three | 149 |
| abstract_inverted_index.(CNNs) | 49 |
| abstract_inverted_index.(LSTM) | 94 |
| abstract_inverted_index.Crime, | 153 |
| abstract_inverted_index.Memory | 93 |
| abstract_inverted_index.Neural | 47 |
| abstract_inverted_index.Public | 0 |
| abstract_inverted_index.assess | 181 |
| abstract_inverted_index.enough | 40 |
| abstract_inverted_index.hybrid | 83 |
| abstract_inverted_index.normal | 64 |
| abstract_inverted_index.object | 98, 125 |
| abstract_inverted_index.public | 23 |
| abstract_inverted_index.stage. | 73 |
| abstract_inverted_index.system | 188 |
| abstract_inverted_index.threat | 204 |
| abstract_inverted_index.widely | 51 |
| abstract_inverted_index.(MRCNN) | 89 |
| abstract_inverted_index.anomaly | 114, 144 |
| abstract_inverted_index.between | 61 |
| abstract_inverted_index.capable | 34 |
| abstract_inverted_index.extract | 134 |
| abstract_inverted_index.feature | 128 |
| abstract_inverted_index.growing | 29 |
| abstract_inverted_index.metrics | 170 |
| abstract_inverted_index.precise | 142, 210 |
| abstract_inverted_index.prevent | 42 |
| abstract_inverted_index.spatial | 136 |
| abstract_inverted_index.systems | 3, 33 |
| abstract_inverted_index.testing | 147 |
| abstract_inverted_index.thefts, | 25 |
| abstract_inverted_index.through | 206 |
| abstract_inverted_index.typical | 8 |
| abstract_inverted_index.Although | 45 |
| abstract_inverted_index.Networks | 48 |
| abstract_inverted_index.Thorough | 146 |
| abstract_inverted_index.abnormal | 13, 62 |
| abstract_inverted_index.accuracy | 163 |
| abstract_inverted_index.accurate | 97 |
| abstract_inverted_index.activity | 69 |
| abstract_inverted_index.advances | 195 |
| abstract_inverted_index.behavior | 10, 65, 103 |
| abstract_inverted_index.combines | 86 |
| abstract_inverted_index.contrast | 121 |
| abstract_inverted_index.criminal | 43, 68 |
| abstract_inverted_index.critical | 5 |
| abstract_inverted_index.dataset. | 168 |
| abstract_inverted_index.duration | 177 |
| abstract_inverted_index.enabling | 202 |
| abstract_inverted_index.identify | 67 |
| abstract_inverted_index.involves | 118 |
| abstract_inverted_index.networks | 95 |
| abstract_inverted_index.overcome | 75 |
| abstract_inverted_index.pipeline | 116 |
| abstract_inverted_index.proposes | 80 |
| abstract_inverted_index.removal, | 124 |
| abstract_inverted_index.research | 194 |
| abstract_inverted_index.temporal | 138 |
| abstract_inverted_index.analysis. | 104 |
| abstract_inverted_index.anomalous | 213 |
| abstract_inverted_index.behavior. | 214 |
| abstract_inverted_index.datasets, | 151 |
| abstract_inverted_index.detecting | 12, 36 |
| abstract_inverted_index.detection | 115, 211 |
| abstract_inverted_index.excellent | 158 |
| abstract_inverted_index.exhibited | 157 |
| abstract_inverted_index.framework | 132 |
| abstract_inverted_index.movements | 38 |
| abstract_inverted_index.observing | 7 |
| abstract_inverted_index.proactive | 203 |
| abstract_inverted_index.real-time | 190 |
| abstract_inverted_index.tracking, | 100, 126 |
| abstract_inverted_index.MRCNN-LSTM | 131 |
| abstract_inverted_index.Short-Term | 92 |
| abstract_inverted_index.Snatch1.0, | 154 |
| abstract_inverted_index.background | 123 |
| abstract_inverted_index.detection, | 99 |
| abstract_inverted_index.detection. | 145 |
| abstract_inverted_index.especially | 15 |
| abstract_inverted_index.inadequate | 58 |
| abstract_inverted_index.mitigation | 205 |
| abstract_inverted_index.monitoring | 2 |
| abstract_inverted_index.multistage | 113 |
| abstract_inverted_index.scenarios. | 192 |
| abstract_inverted_index.sequential | 102 |
| abstract_inverted_index.suspicious | 37 |
| abstract_inverted_index.Performance | 169 |
| abstract_inverted_index.activities, | 14 |
| abstract_inverted_index.conversion, | 120 |
| abstract_inverted_index.early-stage | 143 |
| abstract_inverted_index.extraction. | 129 |
| abstract_inverted_index.intelligent | 32, 199 |
| abstract_inverted_index.observation | 173 |
| abstract_inverted_index.benchmarking | 150 |
| abstract_inverted_index.contribution | 107 |
| abstract_inverted_index.enhancement, | 122 |
| abstract_inverted_index.limitations, | 77 |
| abstract_inverted_index.performance, | 159 |
| abstract_inverted_index.surveillance | 191, 200 |
| abstract_inverted_index.Convolutional | 46 |
| abstract_inverted_index.differentiate | 60 |
| abstract_inverted_index.effectiveness | 185 |
| abstract_inverted_index.environments. | 18 |
| abstract_inverted_index.high-security | 17 |
| abstract_inverted_index.responsiveness | 183 |
| abstract_inverted_index.characteristics | 139 |
| abstract_inverted_index.classification, | 55 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.14146753 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |