Early detection of invasive Phragmites australis at the tidal marsh-forest ecotone with airborne LiDAR Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1016/j.ecolind.2024.112651
Wetlands across North America are invaded by an introduced lineage of the common reed Phragmites australis, and sea level rise has exacerbated the spread of this species. P. australis at tidal marsh-forest ecotones has rapidly been expanding into deteriorating forest, colonizing understory environments ahead of native marsh species. Early detection of P. australis at the ecotone will be critical to the management of this invasive species in coming decades. In this study, we develop and validate a new method for early detection of P. australis, using open access airborne LiDAR data that can uniquely penetrate the tree canopy and detect P. australis within the forest understory. The method was designed for areas of sparse to moderate tree cover, such as the forest edge where trees are dying and P. australis is expanding, where understory species mapping was previously impossible with most spectral data. To differentiate P. australis from shrubs and other understory herbaceous plants, we tested the effectiveness of several LiDAR-derived spatial metrics, including Mean distance, Point density, Scatter, Omnivariance, and Eigentropy, as inputs to a Support Vector Machine (SVM) classifier, followed by a smoothing algorithm to avoid occasional obstacles or disturbances. We compare among metrics and single- vs. multiple- metric-based classifications. The resulting best early detection method of P. australis achieved a classification accuracy of 91.48% at the development site, and between 56.16% and 80.65% accuracy at other test sites. This algorithm provides a cost-effective and high accuracy method of detecting understory P. australis using public airborne LiDAR data. Larger-scale application of this method will provide coastal resource managers and policy-makers with distribution maps of P. australis through time in open environments and the forest understory. More generally, this approach provides a framework for mapping understory species and plant functional groups using LiDAR-derived metrics.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.ecolind.2024.112651
- OA Status
- gold
- Cited By
- 3
- References
- 52
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403256707
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403256707Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.ecolind.2024.112651Digital Object Identifier
- Title
-
Early detection of invasive Phragmites australis at the tidal marsh-forest ecotone with airborne LiDARWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-01Full publication date if available
- Authors
-
Biao Xiong, Siyuan Han, Tyler C. Messerschmidt, Matthew L. Kirwan, Keryn B. Gedan, Man QiList of authors in order
- Landing page
-
https://doi.org/10.1016/j.ecolind.2024.112651Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.ecolind.2024.112651Direct OA link when available
- Concepts
-
Ecotone, Phragmites, Marsh, Environmental science, Lidar, Wetland, Salt marsh, Ecology, Remote sensing, Geography, Habitat, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3Per-year citation counts (last 5 years)
- References (count)
-
52Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403256707 |
|---|---|
| doi | https://doi.org/10.1016/j.ecolind.2024.112651 |
| ids.doi | https://doi.org/10.1016/j.ecolind.2024.112651 |
| ids.openalex | https://openalex.org/W4403256707 |
| fwci | 2.63869709 |
| type | article |
| title | Early detection of invasive Phragmites australis at the tidal marsh-forest ecotone with airborne LiDAR |
| biblio.issue | |
| biblio.volume | 167 |
| biblio.last_page | 112651 |
| biblio.first_page | 112651 |
| grants[0].funder | https://openalex.org/F4320306076 |
| grants[0].award_id | |
| grants[0].funder_display_name | National Science Foundation |
| grants[1].funder | https://openalex.org/F4320322186 |
| grants[1].award_id | |
| grants[1].funder_display_name | Natural Science Foundation of Hubei Province |
| grants[2].funder | https://openalex.org/F4320332182 |
| grants[2].award_id | |
| grants[2].funder_display_name | U.S. Fish and Wildlife Service |
| topics[0].id | https://openalex.org/T10779 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9952999949455261 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2303 |
| topics[0].subfield.display_name | Ecology |
| topics[0].display_name | Coastal wetland ecosystem dynamics |
| topics[1].id | https://openalex.org/T11164 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9850000143051147 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2305 |
| topics[1].subfield.display_name | Environmental Engineering |
| topics[1].display_name | Remote Sensing and LiDAR Applications |
| topics[2].id | https://openalex.org/T12383 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.9807000160217285 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1904 |
| topics[2].subfield.display_name | Earth-Surface Processes |
| topics[2].display_name | Aeolian processes and effects |
| funders[0].id | https://openalex.org/F4320306076 |
| funders[0].ror | https://ror.org/021nxhr62 |
| funders[0].display_name | National Science Foundation |
| funders[1].id | https://openalex.org/F4320322186 |
| funders[1].ror | |
| funders[1].display_name | Natural Science Foundation of Hubei Province |
| funders[2].id | https://openalex.org/F4320332182 |
| funders[2].ror | https://ror.org/04k7dar27 |
| funders[2].display_name | U.S. Fish and Wildlife Service |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | USD |
| apc_list.value_usd | 2500 |
| apc_paid.value | 2500 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2500 |
| concepts[0].id | https://openalex.org/C199877563 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9493287801742554 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q55613 |
| concepts[0].display_name | Ecotone |
| concepts[1].id | https://openalex.org/C2781178838 |
| concepts[1].level | 3 |
| concepts[1].score | 0.8465747833251953 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1976487 |
| concepts[1].display_name | Phragmites |
| concepts[2].id | https://openalex.org/C67268981 |
| concepts[2].level | 3 |
| concepts[2].score | 0.7503471970558167 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q30198 |
| concepts[2].display_name | Marsh |
| concepts[3].id | https://openalex.org/C39432304 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6256744265556335 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[3].display_name | Environmental science |
| concepts[4].id | https://openalex.org/C51399673 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5736233592033386 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q504027 |
| concepts[4].display_name | Lidar |
| concepts[5].id | https://openalex.org/C67715294 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5170246362686157 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q170321 |
| concepts[5].display_name | Wetland |
| concepts[6].id | https://openalex.org/C87441765 |
| concepts[6].level | 2 |
| concepts[6].score | 0.48011183738708496 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q29925 |
| concepts[6].display_name | Salt marsh |
| concepts[7].id | https://openalex.org/C18903297 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4386574327945709 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[7].display_name | Ecology |
| concepts[8].id | https://openalex.org/C62649853 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4351215064525604 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[8].display_name | Remote sensing |
| concepts[9].id | https://openalex.org/C205649164 |
| concepts[9].level | 0 |
| concepts[9].score | 0.40394407510757446 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[9].display_name | Geography |
| concepts[10].id | https://openalex.org/C185933670 |
| concepts[10].level | 2 |
| concepts[10].score | 0.14671888947486877 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q52105 |
| concepts[10].display_name | Habitat |
| concepts[11].id | https://openalex.org/C86803240 |
| concepts[11].level | 0 |
| concepts[11].score | 0.10784143209457397 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[11].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/ecotone |
| keywords[0].score | 0.9493287801742554 |
| keywords[0].display_name | Ecotone |
| keywords[1].id | https://openalex.org/keywords/phragmites |
| keywords[1].score | 0.8465747833251953 |
| keywords[1].display_name | Phragmites |
| keywords[2].id | https://openalex.org/keywords/marsh |
| keywords[2].score | 0.7503471970558167 |
| keywords[2].display_name | Marsh |
| keywords[3].id | https://openalex.org/keywords/environmental-science |
| keywords[3].score | 0.6256744265556335 |
| keywords[3].display_name | Environmental science |
| keywords[4].id | https://openalex.org/keywords/lidar |
| keywords[4].score | 0.5736233592033386 |
| keywords[4].display_name | Lidar |
| keywords[5].id | https://openalex.org/keywords/wetland |
| keywords[5].score | 0.5170246362686157 |
| keywords[5].display_name | Wetland |
| keywords[6].id | https://openalex.org/keywords/salt-marsh |
| keywords[6].score | 0.48011183738708496 |
| keywords[6].display_name | Salt marsh |
| keywords[7].id | https://openalex.org/keywords/ecology |
| keywords[7].score | 0.4386574327945709 |
| keywords[7].display_name | Ecology |
| keywords[8].id | https://openalex.org/keywords/remote-sensing |
| keywords[8].score | 0.4351215064525604 |
| keywords[8].display_name | Remote sensing |
| keywords[9].id | https://openalex.org/keywords/geography |
| keywords[9].score | 0.40394407510757446 |
| keywords[9].display_name | Geography |
| keywords[10].id | https://openalex.org/keywords/habitat |
| keywords[10].score | 0.14671888947486877 |
| keywords[10].display_name | Habitat |
| keywords[11].id | https://openalex.org/keywords/biology |
| keywords[11].score | 0.10784143209457397 |
| keywords[11].display_name | Biology |
| language | en |
| locations[0].id | doi:10.1016/j.ecolind.2024.112651 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S194154261 |
| locations[0].source.issn | 1470-160X, 1872-7034 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1470-160X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Ecological Indicators |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Ecological Indicators |
| locations[0].landing_page_url | https://doi.org/10.1016/j.ecolind.2024.112651 |
| locations[1].id | pmh:oai:doaj.org/article:3527b0e938c749cab326f1933e8a202b |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].source.host_organization_lineage | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Ecological Indicators, Vol 167, Iss , Pp 112651- (2024) |
| locations[1].landing_page_url | https://doaj.org/article/3527b0e938c749cab326f1933e8a202b |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5114242967 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Biao Xiong |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Biao Xiong |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5104284076 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Siyuan Han |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Siyuan Han |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5012633965 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5494-4352 |
| authorships[2].author.display_name | Tyler C. Messerschmidt |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tyler C. Messerschmidt |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5060265508 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0658-3038 |
| authorships[3].author.display_name | Matthew L. Kirwan |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Matthew L. Kirwan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5035552437 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4020-5441 |
| authorships[4].author.display_name | Keryn B. Gedan |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Keryn Gedan |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5060407087 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8437-9959 |
| authorships[5].author.display_name | Man Qi |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Man Qi |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.ecolind.2024.112651 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Early detection of invasive Phragmites australis at the tidal marsh-forest ecotone with airborne LiDAR |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10779 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9952999949455261 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2303 |
| primary_topic.subfield.display_name | Ecology |
| primary_topic.display_name | Coastal wetland ecosystem dynamics |
| related_works | https://openalex.org/W2173634853, https://openalex.org/W2025846717, https://openalex.org/W4321490631, https://openalex.org/W1995875197, https://openalex.org/W1529817902, https://openalex.org/W1990285163, https://openalex.org/W42647753, https://openalex.org/W4379058339, https://openalex.org/W2327914480, https://openalex.org/W200481983 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.ecolind.2024.112651 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S194154261 |
| best_oa_location.source.issn | 1470-160X, 1872-7034 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1470-160X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Ecological Indicators |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Ecological Indicators |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.ecolind.2024.112651 |
| primary_location.id | doi:10.1016/j.ecolind.2024.112651 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S194154261 |
| primary_location.source.issn | 1470-160X, 1872-7034 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1470-160X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Ecological Indicators |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Ecological Indicators |
| primary_location.landing_page_url | https://doi.org/10.1016/j.ecolind.2024.112651 |
| publication_date | 2024-10-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4384202925, https://openalex.org/W6603383834, https://openalex.org/W3127426386, https://openalex.org/W2810927599, https://openalex.org/W4388722508, https://openalex.org/W4292996521, https://openalex.org/W4381611900, https://openalex.org/W4206396112, https://openalex.org/W3049378918, https://openalex.org/W3186917005, https://openalex.org/W2073255048, https://openalex.org/W2947133601, https://openalex.org/W2767708477, https://openalex.org/W2771522049, https://openalex.org/W2123022292, https://openalex.org/W2910704546, https://openalex.org/W4206816400, https://openalex.org/W4385437954, https://openalex.org/W2942855514, https://openalex.org/W2309757679, https://openalex.org/W2946890109, https://openalex.org/W4386457536, https://openalex.org/W2968889514, https://openalex.org/W3172817044, https://openalex.org/W4295063189, https://openalex.org/W2299266285, https://openalex.org/W2583079293, https://openalex.org/W3096102184, https://openalex.org/W4281782327, https://openalex.org/W2011280741, https://openalex.org/W3037541221, https://openalex.org/W2018622407, https://openalex.org/W2039669831, https://openalex.org/W4214624143, https://openalex.org/W2479883500, https://openalex.org/W2063564951, https://openalex.org/W3195583341, https://openalex.org/W6653390239, https://openalex.org/W2041270797, https://openalex.org/W6799455089, https://openalex.org/W3113243634, https://openalex.org/W4376599831, https://openalex.org/W3010665853, https://openalex.org/W2960272772, https://openalex.org/W4327676084, https://openalex.org/W3029629412, https://openalex.org/W4246259808, https://openalex.org/W2176260431, https://openalex.org/W3038052368, https://openalex.org/W3189032250, https://openalex.org/W2011762871, https://openalex.org/W84227776 |
| referenced_works_count | 52 |
| abstract_inverted_index.a | 76, 175, 183, 212, 234, 282 |
| abstract_inverted_index.In | 69 |
| abstract_inverted_index.P. | 27, 51, 83, 100, 128, 145, 209, 243, 266 |
| abstract_inverted_index.To | 143 |
| abstract_inverted_index.We | 192 |
| abstract_inverted_index.an | 7 |
| abstract_inverted_index.as | 119, 172 |
| abstract_inverted_index.at | 29, 53, 217, 227 |
| abstract_inverted_index.be | 57 |
| abstract_inverted_index.by | 6, 182 |
| abstract_inverted_index.in | 66, 270 |
| abstract_inverted_index.is | 130 |
| abstract_inverted_index.of | 10, 24, 44, 50, 62, 82, 112, 158, 208, 215, 240, 252, 265 |
| abstract_inverted_index.or | 190 |
| abstract_inverted_index.to | 59, 114, 174, 186 |
| abstract_inverted_index.we | 72, 154 |
| abstract_inverted_index.The | 106, 202 |
| abstract_inverted_index.and | 16, 74, 98, 127, 149, 170, 196, 221, 224, 236, 260, 273, 288 |
| abstract_inverted_index.are | 4, 125 |
| abstract_inverted_index.can | 92 |
| abstract_inverted_index.for | 79, 110, 284 |
| abstract_inverted_index.has | 20, 33 |
| abstract_inverted_index.new | 77 |
| abstract_inverted_index.sea | 17 |
| abstract_inverted_index.the | 11, 22, 54, 60, 95, 103, 120, 156, 218, 274 |
| abstract_inverted_index.vs. | 198 |
| abstract_inverted_index.was | 108, 136 |
| abstract_inverted_index.Mean | 164 |
| abstract_inverted_index.More | 277 |
| abstract_inverted_index.This | 231 |
| abstract_inverted_index.been | 35 |
| abstract_inverted_index.best | 204 |
| abstract_inverted_index.data | 90 |
| abstract_inverted_index.edge | 122 |
| abstract_inverted_index.from | 147 |
| abstract_inverted_index.high | 237 |
| abstract_inverted_index.into | 37 |
| abstract_inverted_index.maps | 264 |
| abstract_inverted_index.most | 140 |
| abstract_inverted_index.open | 86, 271 |
| abstract_inverted_index.reed | 13 |
| abstract_inverted_index.rise | 19 |
| abstract_inverted_index.such | 118 |
| abstract_inverted_index.test | 229 |
| abstract_inverted_index.that | 91 |
| abstract_inverted_index.this | 25, 63, 70, 253, 279 |
| abstract_inverted_index.time | 269 |
| abstract_inverted_index.tree | 96, 116 |
| abstract_inverted_index.will | 56, 255 |
| abstract_inverted_index.with | 139, 262 |
| abstract_inverted_index.(SVM) | 179 |
| abstract_inverted_index.Early | 48 |
| abstract_inverted_index.LiDAR | 89, 248 |
| abstract_inverted_index.North | 2 |
| abstract_inverted_index.Point | 166 |
| abstract_inverted_index.ahead | 43 |
| abstract_inverted_index.among | 194 |
| abstract_inverted_index.areas | 111 |
| abstract_inverted_index.avoid | 187 |
| abstract_inverted_index.data. | 142, 249 |
| abstract_inverted_index.dying | 126 |
| abstract_inverted_index.early | 80, 205 |
| abstract_inverted_index.level | 18 |
| abstract_inverted_index.marsh | 46 |
| abstract_inverted_index.other | 150, 228 |
| abstract_inverted_index.plant | 289 |
| abstract_inverted_index.site, | 220 |
| abstract_inverted_index.tidal | 30 |
| abstract_inverted_index.trees | 124 |
| abstract_inverted_index.using | 85, 245, 292 |
| abstract_inverted_index.where | 123, 132 |
| abstract_inverted_index.56.16% | 223 |
| abstract_inverted_index.80.65% | 225 |
| abstract_inverted_index.91.48% | 216 |
| abstract_inverted_index.Vector | 177 |
| abstract_inverted_index.access | 87 |
| abstract_inverted_index.across | 1 |
| abstract_inverted_index.canopy | 97 |
| abstract_inverted_index.coming | 67 |
| abstract_inverted_index.common | 12 |
| abstract_inverted_index.cover, | 117 |
| abstract_inverted_index.detect | 99 |
| abstract_inverted_index.forest | 104, 121, 275 |
| abstract_inverted_index.groups | 291 |
| abstract_inverted_index.inputs | 173 |
| abstract_inverted_index.method | 78, 107, 207, 239, 254 |
| abstract_inverted_index.native | 45 |
| abstract_inverted_index.public | 246 |
| abstract_inverted_index.shrubs | 148 |
| abstract_inverted_index.sites. | 230 |
| abstract_inverted_index.sparse | 113 |
| abstract_inverted_index.spread | 23 |
| abstract_inverted_index.study, | 71 |
| abstract_inverted_index.tested | 155 |
| abstract_inverted_index.within | 102 |
| abstract_inverted_index.America | 3 |
| abstract_inverted_index.Machine | 178 |
| abstract_inverted_index.Support | 176 |
| abstract_inverted_index.between | 222 |
| abstract_inverted_index.coastal | 257 |
| abstract_inverted_index.compare | 193 |
| abstract_inverted_index.develop | 73 |
| abstract_inverted_index.ecotone | 55 |
| abstract_inverted_index.forest, | 39 |
| abstract_inverted_index.invaded | 5 |
| abstract_inverted_index.lineage | 9 |
| abstract_inverted_index.mapping | 135, 285 |
| abstract_inverted_index.metrics | 195 |
| abstract_inverted_index.plants, | 153 |
| abstract_inverted_index.provide | 256 |
| abstract_inverted_index.rapidly | 34 |
| abstract_inverted_index.several | 159 |
| abstract_inverted_index.single- | 197 |
| abstract_inverted_index.spatial | 161 |
| abstract_inverted_index.species | 65, 134, 287 |
| abstract_inverted_index.through | 268 |
| abstract_inverted_index.Scatter, | 168 |
| abstract_inverted_index.Wetlands | 0 |
| abstract_inverted_index.accuracy | 214, 226, 238 |
| abstract_inverted_index.achieved | 211 |
| abstract_inverted_index.airborne | 88, 247 |
| abstract_inverted_index.approach | 280 |
| abstract_inverted_index.critical | 58 |
| abstract_inverted_index.decades. | 68 |
| abstract_inverted_index.density, | 167 |
| abstract_inverted_index.designed | 109 |
| abstract_inverted_index.ecotones | 32 |
| abstract_inverted_index.followed | 181 |
| abstract_inverted_index.invasive | 64 |
| abstract_inverted_index.managers | 259 |
| abstract_inverted_index.metrics, | 162 |
| abstract_inverted_index.metrics. | 294 |
| abstract_inverted_index.moderate | 115 |
| abstract_inverted_index.provides | 233, 281 |
| abstract_inverted_index.resource | 258 |
| abstract_inverted_index.species. | 26, 47 |
| abstract_inverted_index.spectral | 141 |
| abstract_inverted_index.uniquely | 93 |
| abstract_inverted_index.validate | 75 |
| abstract_inverted_index.algorithm | 185, 232 |
| abstract_inverted_index.australis | 28, 52, 101, 129, 146, 210, 244, 267 |
| abstract_inverted_index.detecting | 241 |
| abstract_inverted_index.detection | 49, 81, 206 |
| abstract_inverted_index.distance, | 165 |
| abstract_inverted_index.expanding | 36 |
| abstract_inverted_index.framework | 283 |
| abstract_inverted_index.including | 163 |
| abstract_inverted_index.multiple- | 199 |
| abstract_inverted_index.obstacles | 189 |
| abstract_inverted_index.penetrate | 94 |
| abstract_inverted_index.resulting | 203 |
| abstract_inverted_index.smoothing | 184 |
| abstract_inverted_index.Phragmites | 14 |
| abstract_inverted_index.australis, | 15, 84 |
| abstract_inverted_index.colonizing | 40 |
| abstract_inverted_index.expanding, | 131 |
| abstract_inverted_index.functional | 290 |
| abstract_inverted_index.generally, | 278 |
| abstract_inverted_index.herbaceous | 152 |
| abstract_inverted_index.impossible | 138 |
| abstract_inverted_index.introduced | 8 |
| abstract_inverted_index.management | 61 |
| abstract_inverted_index.occasional | 188 |
| abstract_inverted_index.previously | 137 |
| abstract_inverted_index.understory | 41, 133, 151, 242, 286 |
| abstract_inverted_index.Eigentropy, | 171 |
| abstract_inverted_index.application | 251 |
| abstract_inverted_index.classifier, | 180 |
| abstract_inverted_index.development | 219 |
| abstract_inverted_index.exacerbated | 21 |
| abstract_inverted_index.understory. | 105, 276 |
| abstract_inverted_index.Larger-scale | 250 |
| abstract_inverted_index.distribution | 263 |
| abstract_inverted_index.environments | 42, 272 |
| abstract_inverted_index.marsh-forest | 31 |
| abstract_inverted_index.metric-based | 200 |
| abstract_inverted_index.LiDAR-derived | 160, 293 |
| abstract_inverted_index.Omnivariance, | 169 |
| abstract_inverted_index.deteriorating | 38 |
| abstract_inverted_index.differentiate | 144 |
| abstract_inverted_index.disturbances. | 191 |
| abstract_inverted_index.effectiveness | 157 |
| abstract_inverted_index.policy-makers | 261 |
| abstract_inverted_index.classification | 213 |
| abstract_inverted_index.cost-effective | 235 |
| abstract_inverted_index.classifications. | 201 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/14 |
| sustainable_development_goals[0].score | 0.4099999964237213 |
| sustainable_development_goals[0].display_name | Life below water |
| citation_normalized_percentile.value | 0.85042009 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |