Early Prediction of Chronic Kidney Disease: A Comprehensive Performance Analysis of Deep Learning Models Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/a15090308
Chronic kidney disease (CKD) is one of the most life-threatening disorders. To improve survivability, early discovery and good management are encouraged. In this paper, CKD was diagnosed using multiple optimized neural networks against traditional neural networks on the UCI machine learning dataset, to identify the most efficient model for the task. The study works on the binary classification of CKD from 24 attributes. For classification, optimized CNN (OCNN), ANN (OANN), and LSTM (OLSTM) models were used as well as traditional CNN, ANN, and LSTM models. With various performance matrixes, error measures, loss values, AUC values, and compilation time, the implemented models are compared to identify the most competent model for the classification of CKD. It is observed that, overall, the optimized models have better performance compared to the traditional models. The highest validation accuracy among the tradition models were achieved from CNN with 92.71%, whereas OCNN, OANN, and OLSTM have higher accuracies of 98.75%, 96.25%, and 98.5%, respectively. Additionally, OCNN has the highest AUC score of 0.99 and the lowest compilation time for classification with 0.00447 s, making it the most efficient model for the diagnosis of CKD.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/a15090308
- https://www.mdpi.com/1999-4893/15/9/308/pdf?version=1661748839
- OA Status
- gold
- Cited By
- 34
- References
- 20
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4293420779
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4293420779Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/a15090308Digital Object Identifier
- Title
-
Early Prediction of Chronic Kidney Disease: A Comprehensive Performance Analysis of Deep Learning ModelsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-08-29Full publication date if available
- Authors
-
Chaity Mondol, F. M. Javed Mehedi Shamrat, Md. Robiul Hasan, Saidul Alam, Pronab Ghosh, Zarrin Tasnim, Kawsar Ahmed, Francis M. Bui, Sobhy M. IbrahimList of authors in order
- Landing page
-
https://doi.org/10.3390/a15090308Publisher landing page
- PDF URL
-
https://www.mdpi.com/1999-4893/15/9/308/pdf?version=1661748839Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1999-4893/15/9/308/pdf?version=1661748839Direct OA link when available
- Concepts
-
Kidney disease, Computer science, Survivability, Artificial intelligence, Artificial neural network, Predictive modelling, Machine learning, Binary classification, Deep learning, F1 score, Medicine, Internal medicine, Support vector machine, Computer networkTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
34Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 14, 2024: 12, 2023: 8Per-year citation counts (last 5 years)
- References (count)
-
20Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4293420779 |
|---|---|
| doi | https://doi.org/10.3390/a15090308 |
| ids.doi | https://doi.org/10.3390/a15090308 |
| ids.openalex | https://openalex.org/W4293420779 |
| fwci | 10.85590105 |
| type | article |
| title | Early Prediction of Chronic Kidney Disease: A Comprehensive Performance Analysis of Deep Learning Models |
| biblio.issue | 9 |
| biblio.volume | 15 |
| biblio.last_page | 308 |
| biblio.first_page | 308 |
| topics[0].id | https://openalex.org/T11396 |
| topics[0].field.id | https://openalex.org/fields/36 |
| topics[0].field.display_name | Health Professions |
| topics[0].score | 0.9980000257492065 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3605 |
| topics[0].subfield.display_name | Health Information Management |
| topics[0].display_name | Artificial Intelligence in Healthcare |
| topics[1].id | https://openalex.org/T13702 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9556999802589417 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning in Healthcare |
| topics[2].id | https://openalex.org/T10408 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9046000242233276 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2727 |
| topics[2].subfield.display_name | Nephrology |
| topics[2].display_name | Chronic Kidney Disease and Diabetes |
| is_xpac | False |
| apc_list.value | 1400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1515 |
| apc_paid.value | 1400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1515 |
| concepts[0].id | https://openalex.org/C2778653478 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6894115805625916 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1054718 |
| concepts[0].display_name | Kidney disease |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6863648891448975 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2781133158 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6559309363365173 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1088669 |
| concepts[2].display_name | Survivability |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6531482934951782 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C50644808 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5588085651397705 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[4].display_name | Artificial neural network |
| concepts[5].id | https://openalex.org/C45804977 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5214118957519531 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7239673 |
| concepts[5].display_name | Predictive modelling |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5085214376449585 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C66905080 |
| concepts[7].level | 3 |
| concepts[7].score | 0.49866676330566406 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q17005494 |
| concepts[7].display_name | Binary classification |
| concepts[8].id | https://openalex.org/C108583219 |
| concepts[8].level | 2 |
| concepts[8].score | 0.46386685967445374 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[8].display_name | Deep learning |
| concepts[9].id | https://openalex.org/C148524875 |
| concepts[9].level | 2 |
| concepts[9].score | 0.43327248096466064 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q6975395 |
| concepts[9].display_name | F1 score |
| concepts[10].id | https://openalex.org/C71924100 |
| concepts[10].level | 0 |
| concepts[10].score | 0.25642120838165283 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[10].display_name | Medicine |
| concepts[11].id | https://openalex.org/C126322002 |
| concepts[11].level | 1 |
| concepts[11].score | 0.160837322473526 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[11].display_name | Internal medicine |
| concepts[12].id | https://openalex.org/C12267149 |
| concepts[12].level | 2 |
| concepts[12].score | 0.15930461883544922 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[12].display_name | Support vector machine |
| concepts[13].id | https://openalex.org/C31258907 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[13].display_name | Computer network |
| keywords[0].id | https://openalex.org/keywords/kidney-disease |
| keywords[0].score | 0.6894115805625916 |
| keywords[0].display_name | Kidney disease |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6863648891448975 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/survivability |
| keywords[2].score | 0.6559309363365173 |
| keywords[2].display_name | Survivability |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6531482934951782 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[4].score | 0.5588085651397705 |
| keywords[4].display_name | Artificial neural network |
| keywords[5].id | https://openalex.org/keywords/predictive-modelling |
| keywords[5].score | 0.5214118957519531 |
| keywords[5].display_name | Predictive modelling |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.5085214376449585 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/binary-classification |
| keywords[7].score | 0.49866676330566406 |
| keywords[7].display_name | Binary classification |
| keywords[8].id | https://openalex.org/keywords/deep-learning |
| keywords[8].score | 0.46386685967445374 |
| keywords[8].display_name | Deep learning |
| keywords[9].id | https://openalex.org/keywords/f1-score |
| keywords[9].score | 0.43327248096466064 |
| keywords[9].display_name | F1 score |
| keywords[10].id | https://openalex.org/keywords/medicine |
| keywords[10].score | 0.25642120838165283 |
| keywords[10].display_name | Medicine |
| keywords[11].id | https://openalex.org/keywords/internal-medicine |
| keywords[11].score | 0.160837322473526 |
| keywords[11].display_name | Internal medicine |
| keywords[12].id | https://openalex.org/keywords/support-vector-machine |
| keywords[12].score | 0.15930461883544922 |
| keywords[12].display_name | Support vector machine |
| language | en |
| locations[0].id | doi:10.3390/a15090308 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S190629608 |
| locations[0].source.issn | 1999-4893 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1999-4893 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Algorithms |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1999-4893/15/9/308/pdf?version=1661748839 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Algorithms |
| locations[0].landing_page_url | https://doi.org/10.3390/a15090308 |
| locations[1].id | pmh:oai:doaj.org/article:1c7246be402f4dbbb60025a08a90127c |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Algorithms, Vol 15, Iss 9, p 308 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/1c7246be402f4dbbb60025a08a90127c |
| locations[2].id | pmh:oai:mdpi.com:/1999-4893/15/9/308/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Algorithms; Volume 15; Issue 9; Pages: 308 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/a15090308 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5063417230 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Chaity Mondol |
| authorships[0].countries | BD |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I200606013 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Daffodil International University, Dhaka 1207, Bangladesh |
| authorships[0].institutions[0].id | https://openalex.org/I200606013 |
| authorships[0].institutions[0].ror | https://ror.org/052t4a858 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I200606013 |
| authorships[0].institutions[0].country_code | BD |
| authorships[0].institutions[0].display_name | Daffodil International University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chaity Mondol |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science and Engineering, Daffodil International University, Dhaka 1207, Bangladesh |
| authorships[1].author.id | https://openalex.org/A5045615699 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9176-3537 |
| authorships[1].author.display_name | F. M. Javed Mehedi Shamrat |
| authorships[1].countries | BD |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I200606013 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Software Engineering, Daffodil International University, Dhaka 1207, Bangladesh |
| authorships[1].institutions[0].id | https://openalex.org/I200606013 |
| authorships[1].institutions[0].ror | https://ror.org/052t4a858 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I200606013 |
| authorships[1].institutions[0].country_code | BD |
| authorships[1].institutions[0].display_name | Daffodil International University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | F. M. Javed Mehedi Shamrat |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Software Engineering, Daffodil International University, Dhaka 1207, Bangladesh |
| authorships[2].author.id | https://openalex.org/A5103281764 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3774-2465 |
| authorships[2].author.display_name | Md. Robiul Hasan |
| authorships[2].countries | BD |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I200606013 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Daffodil International University, Dhaka 1207, Bangladesh |
| authorships[2].institutions[0].id | https://openalex.org/I200606013 |
| authorships[2].institutions[0].ror | https://ror.org/052t4a858 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I200606013 |
| authorships[2].institutions[0].country_code | BD |
| authorships[2].institutions[0].display_name | Daffodil International University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Md. Robiul Hasan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science and Engineering, Daffodil International University, Dhaka 1207, Bangladesh |
| authorships[3].author.id | https://openalex.org/A5102490266 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Saidul Alam |
| authorships[3].countries | BD |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I200606013 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Daffodil International University, Dhaka 1207, Bangladesh |
| authorships[3].institutions[0].id | https://openalex.org/I200606013 |
| authorships[3].institutions[0].ror | https://ror.org/052t4a858 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I200606013 |
| authorships[3].institutions[0].country_code | BD |
| authorships[3].institutions[0].display_name | Daffodil International University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Saidul Alam |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Science and Engineering, Daffodil International University, Dhaka 1207, Bangladesh |
| authorships[4].author.id | https://openalex.org/A5043454773 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5524-2328 |
| authorships[4].author.display_name | Pronab Ghosh |
| authorships[4].countries | CA |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I72541430 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Computer Science, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada |
| authorships[4].institutions[0].id | https://openalex.org/I72541430 |
| authorships[4].institutions[0].ror | https://ror.org/023p7mg82 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I72541430 |
| authorships[4].institutions[0].country_code | CA |
| authorships[4].institutions[0].display_name | Lakehead University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Pronab Ghosh |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Computer Science, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada |
| authorships[5].author.id | https://openalex.org/A5032159903 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-5962-8455 |
| authorships[5].author.display_name | Zarrin Tasnim |
| authorships[5].countries | BD |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I200606013 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Software Engineering, Daffodil International University, Dhaka 1207, Bangladesh |
| authorships[5].institutions[0].id | https://openalex.org/I200606013 |
| authorships[5].institutions[0].ror | https://ror.org/052t4a858 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I200606013 |
| authorships[5].institutions[0].country_code | BD |
| authorships[5].institutions[0].display_name | Daffodil International University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Zarrin Tasnim |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Software Engineering, Daffodil International University, Dhaka 1207, Bangladesh |
| authorships[6].author.id | https://openalex.org/A5020570233 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-4034-9819 |
| authorships[6].author.display_name | Kawsar Ahmed |
| authorships[6].countries | BD, CA, FR |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I32625721, https://openalex.org/I4210118524 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Electrical and Computer Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I41173762 |
| authorships[6].affiliations[1].raw_affiliation_string | Group of Bio-Photomatiχ Department of Information and Communication Technology, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh |
| authorships[6].institutions[0].id | https://openalex.org/I41173762 |
| authorships[6].institutions[0].ror | https://ror.org/00gvj4587 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I41173762 |
| authorships[6].institutions[0].country_code | BD |
| authorships[6].institutions[0].display_name | Mawlana Bhashani Science and Technology University |
| authorships[6].institutions[1].id | https://openalex.org/I32625721 |
| authorships[6].institutions[1].ror | https://ror.org/010x8gc63 |
| authorships[6].institutions[1].type | education |
| authorships[6].institutions[1].lineage | https://openalex.org/I32625721 |
| authorships[6].institutions[1].country_code | CA |
| authorships[6].institutions[1].display_name | University of Saskatchewan |
| authorships[6].institutions[2].id | https://openalex.org/I4210118524 |
| authorships[6].institutions[2].ror | https://ror.org/02dn7x778 |
| authorships[6].institutions[2].type | education |
| authorships[6].institutions[2].lineage | https://openalex.org/I4210118524 |
| authorships[6].institutions[2].country_code | FR |
| authorships[6].institutions[2].display_name | Université Bourgogne Franche-Comté |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Kawsar Ahmed |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | Department of Electrical and Computer Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada, Group of Bio-Photomatiχ Department of Information and Communication Technology, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh |
| authorships[7].author.id | https://openalex.org/A5071017561 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-8799-5965 |
| authorships[7].author.display_name | Francis M. Bui |
| authorships[7].countries | CA, FR |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I32625721, https://openalex.org/I4210118524 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Electrical and Computer Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada |
| authorships[7].institutions[0].id | https://openalex.org/I32625721 |
| authorships[7].institutions[0].ror | https://ror.org/010x8gc63 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I32625721 |
| authorships[7].institutions[0].country_code | CA |
| authorships[7].institutions[0].display_name | University of Saskatchewan |
| authorships[7].institutions[1].id | https://openalex.org/I4210118524 |
| authorships[7].institutions[1].ror | https://ror.org/02dn7x778 |
| authorships[7].institutions[1].type | education |
| authorships[7].institutions[1].lineage | https://openalex.org/I4210118524 |
| authorships[7].institutions[1].country_code | FR |
| authorships[7].institutions[1].display_name | Université Bourgogne Franche-Comté |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Francis M. Bui |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Electrical and Computer Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada |
| authorships[8].author.id | https://openalex.org/A5114045605 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Sobhy M. Ibrahim |
| authorships[8].countries | SA |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I28022161 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia |
| authorships[8].institutions[0].id | https://openalex.org/I28022161 |
| authorships[8].institutions[0].ror | https://ror.org/02f81g417 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I28022161 |
| authorships[8].institutions[0].country_code | SA |
| authorships[8].institutions[0].display_name | King Saud University |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Sobhy M. Ibrahim |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1999-4893/15/9/308/pdf?version=1661748839 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Early Prediction of Chronic Kidney Disease: A Comprehensive Performance Analysis of Deep Learning Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11396 |
| primary_topic.field.id | https://openalex.org/fields/36 |
| primary_topic.field.display_name | Health Professions |
| primary_topic.score | 0.9980000257492065 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3605 |
| primary_topic.subfield.display_name | Health Information Management |
| primary_topic.display_name | Artificial Intelligence in Healthcare |
| related_works | https://openalex.org/W2387494004, https://openalex.org/W2162492390, https://openalex.org/W2350417149, https://openalex.org/W2785505596, https://openalex.org/W2555950988, https://openalex.org/W4362612681, https://openalex.org/W2129129117, https://openalex.org/W3113421719, https://openalex.org/W4387982773, https://openalex.org/W4283785590 |
| cited_by_count | 34 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 14 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 12 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 8 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/a15090308 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S190629608 |
| best_oa_location.source.issn | 1999-4893 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1999-4893 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Algorithms |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1999-4893/15/9/308/pdf?version=1661748839 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Algorithms |
| best_oa_location.landing_page_url | https://doi.org/10.3390/a15090308 |
| primary_location.id | doi:10.3390/a15090308 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S190629608 |
| primary_location.source.issn | 1999-4893 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1999-4893 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Algorithms |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1999-4893/15/9/308/pdf?version=1661748839 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Algorithms |
| primary_location.landing_page_url | https://doi.org/10.3390/a15090308 |
| publication_date | 2022-08-29 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2948149587, https://openalex.org/W3005957464, https://openalex.org/W3082417489, https://openalex.org/W6794952428, https://openalex.org/W2953536790, https://openalex.org/W3212698700, https://openalex.org/W4200420294, https://openalex.org/W3217392036, https://openalex.org/W3021399285, https://openalex.org/W3092548157, https://openalex.org/W3008451618, https://openalex.org/W2940596626, https://openalex.org/W3037129372, https://openalex.org/W3040743320, https://openalex.org/W2922492270, https://openalex.org/W3113899552, https://openalex.org/W3138415243, https://openalex.org/W3200191661, https://openalex.org/W4290612991, https://openalex.org/W4213363652 |
| referenced_works_count | 20 |
| abstract_inverted_index.24 | 61 |
| abstract_inverted_index.In | 21 |
| abstract_inverted_index.It | 114 |
| abstract_inverted_index.To | 11 |
| abstract_inverted_index.as | 76, 78 |
| abstract_inverted_index.is | 4, 115 |
| abstract_inverted_index.it | 178 |
| abstract_inverted_index.of | 6, 58, 112, 152, 165, 186 |
| abstract_inverted_index.on | 36, 54 |
| abstract_inverted_index.s, | 176 |
| abstract_inverted_index.to | 42, 103, 126 |
| abstract_inverted_index.ANN | 68 |
| abstract_inverted_index.AUC | 93, 163 |
| abstract_inverted_index.CKD | 24, 59 |
| abstract_inverted_index.CNN | 66, 141 |
| abstract_inverted_index.For | 63 |
| abstract_inverted_index.The | 51, 130 |
| abstract_inverted_index.UCI | 38 |
| abstract_inverted_index.and | 16, 70, 82, 95, 147, 155, 167 |
| abstract_inverted_index.are | 19, 101 |
| abstract_inverted_index.for | 48, 109, 172, 183 |
| abstract_inverted_index.has | 160 |
| abstract_inverted_index.one | 5 |
| abstract_inverted_index.the | 7, 37, 44, 49, 55, 98, 105, 110, 119, 127, 135, 161, 168, 179, 184 |
| abstract_inverted_index.was | 25 |
| abstract_inverted_index.0.99 | 166 |
| abstract_inverted_index.ANN, | 81 |
| abstract_inverted_index.CKD. | 113, 187 |
| abstract_inverted_index.CNN, | 80 |
| abstract_inverted_index.LSTM | 71, 83 |
| abstract_inverted_index.OCNN | 159 |
| abstract_inverted_index.With | 85 |
| abstract_inverted_index.from | 60, 140 |
| abstract_inverted_index.good | 17 |
| abstract_inverted_index.have | 122, 149 |
| abstract_inverted_index.loss | 91 |
| abstract_inverted_index.most | 8, 45, 106, 180 |
| abstract_inverted_index.this | 22 |
| abstract_inverted_index.time | 171 |
| abstract_inverted_index.used | 75 |
| abstract_inverted_index.well | 77 |
| abstract_inverted_index.were | 74, 138 |
| abstract_inverted_index.with | 142, 174 |
| abstract_inverted_index.(CKD) | 3 |
| abstract_inverted_index.OANN, | 146 |
| abstract_inverted_index.OCNN, | 145 |
| abstract_inverted_index.OLSTM | 148 |
| abstract_inverted_index.among | 134 |
| abstract_inverted_index.early | 14 |
| abstract_inverted_index.error | 89 |
| abstract_inverted_index.model | 47, 108, 182 |
| abstract_inverted_index.score | 164 |
| abstract_inverted_index.study | 52 |
| abstract_inverted_index.task. | 50 |
| abstract_inverted_index.that, | 117 |
| abstract_inverted_index.time, | 97 |
| abstract_inverted_index.using | 27 |
| abstract_inverted_index.works | 53 |
| abstract_inverted_index.98.5%, | 156 |
| abstract_inverted_index.better | 123 |
| abstract_inverted_index.binary | 56 |
| abstract_inverted_index.higher | 150 |
| abstract_inverted_index.kidney | 1 |
| abstract_inverted_index.lowest | 169 |
| abstract_inverted_index.making | 177 |
| abstract_inverted_index.models | 73, 100, 121, 137 |
| abstract_inverted_index.neural | 30, 34 |
| abstract_inverted_index.paper, | 23 |
| abstract_inverted_index.(OANN), | 69 |
| abstract_inverted_index.(OCNN), | 67 |
| abstract_inverted_index.(OLSTM) | 72 |
| abstract_inverted_index.0.00447 | 175 |
| abstract_inverted_index.92.71%, | 143 |
| abstract_inverted_index.96.25%, | 154 |
| abstract_inverted_index.98.75%, | 153 |
| abstract_inverted_index.Chronic | 0 |
| abstract_inverted_index.against | 32 |
| abstract_inverted_index.disease | 2 |
| abstract_inverted_index.highest | 131, 162 |
| abstract_inverted_index.improve | 12 |
| abstract_inverted_index.machine | 39 |
| abstract_inverted_index.models. | 84, 129 |
| abstract_inverted_index.values, | 92, 94 |
| abstract_inverted_index.various | 86 |
| abstract_inverted_index.whereas | 144 |
| abstract_inverted_index.accuracy | 133 |
| abstract_inverted_index.achieved | 139 |
| abstract_inverted_index.compared | 102, 125 |
| abstract_inverted_index.dataset, | 41 |
| abstract_inverted_index.identify | 43, 104 |
| abstract_inverted_index.learning | 40 |
| abstract_inverted_index.multiple | 28 |
| abstract_inverted_index.networks | 31, 35 |
| abstract_inverted_index.observed | 116 |
| abstract_inverted_index.overall, | 118 |
| abstract_inverted_index.competent | 107 |
| abstract_inverted_index.diagnosed | 26 |
| abstract_inverted_index.diagnosis | 185 |
| abstract_inverted_index.discovery | 15 |
| abstract_inverted_index.efficient | 46, 181 |
| abstract_inverted_index.matrixes, | 88 |
| abstract_inverted_index.measures, | 90 |
| abstract_inverted_index.optimized | 29, 65, 120 |
| abstract_inverted_index.tradition | 136 |
| abstract_inverted_index.accuracies | 151 |
| abstract_inverted_index.disorders. | 10 |
| abstract_inverted_index.management | 18 |
| abstract_inverted_index.validation | 132 |
| abstract_inverted_index.attributes. | 62 |
| abstract_inverted_index.compilation | 96, 170 |
| abstract_inverted_index.encouraged. | 20 |
| abstract_inverted_index.implemented | 99 |
| abstract_inverted_index.performance | 87, 124 |
| abstract_inverted_index.traditional | 33, 79, 128 |
| abstract_inverted_index.Additionally, | 158 |
| abstract_inverted_index.respectively. | 157 |
| abstract_inverted_index.classification | 57, 111, 173 |
| abstract_inverted_index.survivability, | 13 |
| abstract_inverted_index.classification, | 64 |
| abstract_inverted_index.life-threatening | 9 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 99 |
| corresponding_author_ids | https://openalex.org/A5020570233 |
| countries_distinct_count | 4 |
| institutions_distinct_count | 9 |
| corresponding_institution_ids | https://openalex.org/I32625721, https://openalex.org/I41173762, https://openalex.org/I4210118524 |
| citation_normalized_percentile.value | 0.97721685 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |