Early prediction of remaining discharge time for lithium-ion batteries considering parameter correlation between discharge stages Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.17531/ein.2019.1.10
In this paper, we propose a method for making early predictions of remaining discharge time (RDT) that considers information about future battery discharge process. Instead of analyzing the entire degradation process of a battery, as in the existing literature, we obtain the information about future battery condition by decomposing the discharge model into three stages, according to level of voltage loss. Correlation between model parameters at the first and last stages of discharge process allows the values of model parameters in the future to be used to predict the value of parameters at early stages of discharge. The particle swarm optimization (PSO) and particle filter (PF) algorithms are employed to update parameters when new voltage data is available. A case study demonstrates that the proposed approach predicts RDT more accurately than the benchmark PF-based prediction method, regardless of the degradation period of the battery.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.17531/ein.2019.1.10
- https://doi.org/10.17531/ein.2019.1.10
- OA Status
- gold
- Cited By
- 5
- References
- 32
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2903851685
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2903851685Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.17531/ein.2019.1.10Digital Object Identifier
- Title
-
Early prediction of remaining discharge time for lithium-ion batteries considering parameter correlation between discharge stagesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-12-19Full publication date if available
- Authors
-
Jinsong Yu, Jie Yang, Diyin Tang, Jing DaiList of authors in order
- Landing page
-
https://doi.org/10.17531/ein.2019.1.10Publisher landing page
- PDF URL
-
https://doi.org/10.17531/ein.2019.1.10Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.17531/ein.2019.1.10Direct OA link when available
- Concepts
-
Particle swarm optimization, Battery (electricity), Benchmark (surveying), Voltage, Computer science, Process (computing), Lithium-ion battery, Degradation (telecommunications), Control theory (sociology), Algorithm, Engineering, Artificial intelligence, Electrical engineering, Power (physics), Physics, Telecommunications, Control (management), Geography, Quantum mechanics, Operating system, GeodesyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2022: 1, 2021: 1, 2019: 2Per-year citation counts (last 5 years)
- References (count)
-
32Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2903851685 |
|---|---|
| doi | https://doi.org/10.17531/ein.2019.1.10 |
| ids.doi | https://doi.org/10.17531/ein.2019.1.10 |
| ids.mag | 2903851685 |
| ids.openalex | https://openalex.org/W2903851685 |
| fwci | 0.47931879 |
| type | article |
| title | Early prediction of remaining discharge time for lithium-ion batteries considering parameter correlation between discharge stages |
| biblio.issue | 1 |
| biblio.volume | 21 |
| biblio.last_page | 89 |
| biblio.first_page | 81 |
| topics[0].id | https://openalex.org/T10663 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2203 |
| topics[0].subfield.display_name | Automotive Engineering |
| topics[0].display_name | Advanced Battery Technologies Research |
| topics[1].id | https://openalex.org/T10780 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9890000224113464 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2213 |
| topics[1].subfield.display_name | Safety, Risk, Reliability and Quality |
| topics[1].display_name | Reliability and Maintenance Optimization |
| topics[2].id | https://openalex.org/T10768 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9828000068664551 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Electric Vehicles and Infrastructure |
| is_xpac | False |
| apc_list.value | 410 |
| apc_list.currency | EUR |
| apc_list.value_usd | 442 |
| apc_paid.value | 410 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 442 |
| concepts[0].id | https://openalex.org/C85617194 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7229831218719482 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2072794 |
| concepts[0].display_name | Particle swarm optimization |
| concepts[1].id | https://openalex.org/C555008776 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7209963798522949 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q267298 |
| concepts[1].display_name | Battery (electricity) |
| concepts[2].id | https://openalex.org/C185798385 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6345625519752502 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[2].display_name | Benchmark (surveying) |
| concepts[3].id | https://openalex.org/C165801399 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6023722887039185 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[3].display_name | Voltage |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5122896432876587 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C98045186 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5036246180534363 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[5].display_name | Process (computing) |
| concepts[6].id | https://openalex.org/C2779197387 |
| concepts[6].level | 4 |
| concepts[6].score | 0.46400466561317444 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2822895 |
| concepts[6].display_name | Lithium-ion battery |
| concepts[7].id | https://openalex.org/C2779679103 |
| concepts[7].level | 2 |
| concepts[7].score | 0.46122485399246216 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5251805 |
| concepts[7].display_name | Degradation (telecommunications) |
| concepts[8].id | https://openalex.org/C47446073 |
| concepts[8].level | 3 |
| concepts[8].score | 0.34458625316619873 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5165890 |
| concepts[8].display_name | Control theory (sociology) |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.23898854851722717 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.2151786983013153 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.15807178616523743 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C119599485 |
| concepts[12].level | 1 |
| concepts[12].score | 0.1205700933933258 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[12].display_name | Electrical engineering |
| concepts[13].id | https://openalex.org/C163258240 |
| concepts[13].level | 2 |
| concepts[13].score | 0.08754473924636841 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[13].display_name | Power (physics) |
| concepts[14].id | https://openalex.org/C121332964 |
| concepts[14].level | 0 |
| concepts[14].score | 0.08262449502944946 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[14].display_name | Physics |
| concepts[15].id | https://openalex.org/C76155785 |
| concepts[15].level | 1 |
| concepts[15].score | 0.06871387362480164 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[15].display_name | Telecommunications |
| concepts[16].id | https://openalex.org/C2775924081 |
| concepts[16].level | 2 |
| concepts[16].score | 0.05932101607322693 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[16].display_name | Control (management) |
| concepts[17].id | https://openalex.org/C205649164 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[17].display_name | Geography |
| concepts[18].id | https://openalex.org/C62520636 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[18].display_name | Quantum mechanics |
| concepts[19].id | https://openalex.org/C111919701 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[19].display_name | Operating system |
| concepts[20].id | https://openalex.org/C13280743 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[20].display_name | Geodesy |
| keywords[0].id | https://openalex.org/keywords/particle-swarm-optimization |
| keywords[0].score | 0.7229831218719482 |
| keywords[0].display_name | Particle swarm optimization |
| keywords[1].id | https://openalex.org/keywords/battery |
| keywords[1].score | 0.7209963798522949 |
| keywords[1].display_name | Battery (electricity) |
| keywords[2].id | https://openalex.org/keywords/benchmark |
| keywords[2].score | 0.6345625519752502 |
| keywords[2].display_name | Benchmark (surveying) |
| keywords[3].id | https://openalex.org/keywords/voltage |
| keywords[3].score | 0.6023722887039185 |
| keywords[3].display_name | Voltage |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5122896432876587 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/process |
| keywords[5].score | 0.5036246180534363 |
| keywords[5].display_name | Process (computing) |
| keywords[6].id | https://openalex.org/keywords/lithium-ion-battery |
| keywords[6].score | 0.46400466561317444 |
| keywords[6].display_name | Lithium-ion battery |
| keywords[7].id | https://openalex.org/keywords/degradation |
| keywords[7].score | 0.46122485399246216 |
| keywords[7].display_name | Degradation (telecommunications) |
| keywords[8].id | https://openalex.org/keywords/control-theory |
| keywords[8].score | 0.34458625316619873 |
| keywords[8].display_name | Control theory (sociology) |
| keywords[9].id | https://openalex.org/keywords/algorithm |
| keywords[9].score | 0.23898854851722717 |
| keywords[9].display_name | Algorithm |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.2151786983013153 |
| keywords[10].display_name | Engineering |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.15807178616523743 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/electrical-engineering |
| keywords[12].score | 0.1205700933933258 |
| keywords[12].display_name | Electrical engineering |
| keywords[13].id | https://openalex.org/keywords/power |
| keywords[13].score | 0.08754473924636841 |
| keywords[13].display_name | Power (physics) |
| keywords[14].id | https://openalex.org/keywords/physics |
| keywords[14].score | 0.08262449502944946 |
| keywords[14].display_name | Physics |
| keywords[15].id | https://openalex.org/keywords/telecommunications |
| keywords[15].score | 0.06871387362480164 |
| keywords[15].display_name | Telecommunications |
| keywords[16].id | https://openalex.org/keywords/control |
| keywords[16].score | 0.05932101607322693 |
| keywords[16].display_name | Control (management) |
| language | en |
| locations[0].id | doi:10.17531/ein.2019.1.10 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210233445 |
| locations[0].source.issn | 1507-2711, 2956-3860 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1507-2711 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Eksploatacja i Niezawodnosc - Maintenance and Reliability |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://doi.org/10.17531/ein.2019.1.10 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Eksploatacja i Niezawodność – Maintenance and Reliability |
| locations[0].landing_page_url | https://doi.org/10.17531/ein.2019.1.10 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5026534062 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1998-6995 |
| authorships[0].author.display_name | Jinsong Yu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jinsong Yu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5012805036 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1130-5865 |
| authorships[1].author.display_name | Jie Yang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jie Yang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5023760637 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5002-9694 |
| authorships[2].author.display_name | Diyin Tang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Diyin Tang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5020472218 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9819-0206 |
| authorships[3].author.display_name | Jing Dai |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Jing Dai |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.17531/ein.2019.1.10 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Early prediction of remaining discharge time for lithium-ion batteries considering parameter correlation between discharge stages |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10663 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2203 |
| primary_topic.subfield.display_name | Automotive Engineering |
| primary_topic.display_name | Advanced Battery Technologies Research |
| related_works | https://openalex.org/W2995074223, https://openalex.org/W2357719166, https://openalex.org/W4224246090, https://openalex.org/W3165173190, https://openalex.org/W4388039502, https://openalex.org/W2080384327, https://openalex.org/W3161330592, https://openalex.org/W2274723115, https://openalex.org/W2159458361, https://openalex.org/W3089487084 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2019 |
| counts_by_year[3].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.17531/ein.2019.1.10 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210233445 |
| best_oa_location.source.issn | 1507-2711, 2956-3860 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1507-2711 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Eksploatacja i Niezawodnosc - Maintenance and Reliability |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://doi.org/10.17531/ein.2019.1.10 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Eksploatacja i Niezawodność – Maintenance and Reliability |
| best_oa_location.landing_page_url | https://doi.org/10.17531/ein.2019.1.10 |
| primary_location.id | doi:10.17531/ein.2019.1.10 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210233445 |
| primary_location.source.issn | 1507-2711, 2956-3860 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1507-2711 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Eksploatacja i Niezawodnosc - Maintenance and Reliability |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://doi.org/10.17531/ein.2019.1.10 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Eksploatacja i Niezawodność – Maintenance and Reliability |
| primary_location.landing_page_url | https://doi.org/10.17531/ein.2019.1.10 |
| publication_date | 2018-12-19 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W2160337655, https://openalex.org/W2623184231, https://openalex.org/W39129164, https://openalex.org/W2151708738, https://openalex.org/W2748329381, https://openalex.org/W2005265789, https://openalex.org/W1981952896, https://openalex.org/W1998803278, https://openalex.org/W2600477337, https://openalex.org/W2152195021, https://openalex.org/W1592409232, https://openalex.org/W2593788042, https://openalex.org/W2020776245, https://openalex.org/W2079985616, https://openalex.org/W2085942406, https://openalex.org/W3137214770, https://openalex.org/W2152291914, https://openalex.org/W1988117495, https://openalex.org/W2202755627, https://openalex.org/W2319355971, https://openalex.org/W2141994685, https://openalex.org/W2584089850, https://openalex.org/W2035593843, https://openalex.org/W1975152889, https://openalex.org/W2056207828, https://openalex.org/W2165344987, https://openalex.org/W2402961132, https://openalex.org/W2547400235, https://openalex.org/W2187147423, https://openalex.org/W2574806640, https://openalex.org/W1015042224, https://openalex.org/W4298330376 |
| referenced_works_count | 32 |
| abstract_inverted_index.A | 118 |
| abstract_inverted_index.a | 5, 32 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.as | 34 |
| abstract_inverted_index.at | 65, 92 |
| abstract_inverted_index.be | 84 |
| abstract_inverted_index.by | 47 |
| abstract_inverted_index.in | 35, 80 |
| abstract_inverted_index.is | 116 |
| abstract_inverted_index.of | 11, 25, 31, 58, 71, 77, 90, 95, 137, 141 |
| abstract_inverted_index.to | 56, 83, 86, 109 |
| abstract_inverted_index.we | 3, 39 |
| abstract_inverted_index.RDT | 127 |
| abstract_inverted_index.The | 97 |
| abstract_inverted_index.and | 68, 102 |
| abstract_inverted_index.are | 107 |
| abstract_inverted_index.for | 7 |
| abstract_inverted_index.new | 113 |
| abstract_inverted_index.the | 27, 36, 41, 49, 66, 75, 81, 88, 123, 131, 138, 142 |
| abstract_inverted_index.(PF) | 105 |
| abstract_inverted_index.case | 119 |
| abstract_inverted_index.data | 115 |
| abstract_inverted_index.into | 52 |
| abstract_inverted_index.last | 69 |
| abstract_inverted_index.more | 128 |
| abstract_inverted_index.than | 130 |
| abstract_inverted_index.that | 16, 122 |
| abstract_inverted_index.this | 1 |
| abstract_inverted_index.time | 14 |
| abstract_inverted_index.used | 85 |
| abstract_inverted_index.when | 112 |
| abstract_inverted_index.(PSO) | 101 |
| abstract_inverted_index.(RDT) | 15 |
| abstract_inverted_index.about | 19, 43 |
| abstract_inverted_index.early | 9, 93 |
| abstract_inverted_index.first | 67 |
| abstract_inverted_index.level | 57 |
| abstract_inverted_index.loss. | 60 |
| abstract_inverted_index.model | 51, 63, 78 |
| abstract_inverted_index.study | 120 |
| abstract_inverted_index.swarm | 99 |
| abstract_inverted_index.three | 53 |
| abstract_inverted_index.value | 89 |
| abstract_inverted_index.allows | 74 |
| abstract_inverted_index.entire | 28 |
| abstract_inverted_index.filter | 104 |
| abstract_inverted_index.future | 20, 44, 82 |
| abstract_inverted_index.making | 8 |
| abstract_inverted_index.method | 6 |
| abstract_inverted_index.obtain | 40 |
| abstract_inverted_index.paper, | 2 |
| abstract_inverted_index.period | 140 |
| abstract_inverted_index.stages | 70, 94 |
| abstract_inverted_index.update | 110 |
| abstract_inverted_index.values | 76 |
| abstract_inverted_index.Instead | 24 |
| abstract_inverted_index.battery | 21, 45 |
| abstract_inverted_index.between | 62 |
| abstract_inverted_index.method, | 135 |
| abstract_inverted_index.predict | 87 |
| abstract_inverted_index.process | 30, 73 |
| abstract_inverted_index.propose | 4 |
| abstract_inverted_index.stages, | 54 |
| abstract_inverted_index.voltage | 59, 114 |
| abstract_inverted_index.PF-based | 133 |
| abstract_inverted_index.approach | 125 |
| abstract_inverted_index.battery, | 33 |
| abstract_inverted_index.battery. | 143 |
| abstract_inverted_index.employed | 108 |
| abstract_inverted_index.existing | 37 |
| abstract_inverted_index.particle | 98, 103 |
| abstract_inverted_index.predicts | 126 |
| abstract_inverted_index.process. | 23 |
| abstract_inverted_index.proposed | 124 |
| abstract_inverted_index.according | 55 |
| abstract_inverted_index.analyzing | 26 |
| abstract_inverted_index.benchmark | 132 |
| abstract_inverted_index.condition | 46 |
| abstract_inverted_index.considers | 17 |
| abstract_inverted_index.discharge | 13, 22, 50, 72 |
| abstract_inverted_index.remaining | 12 |
| abstract_inverted_index.accurately | 129 |
| abstract_inverted_index.algorithms | 106 |
| abstract_inverted_index.available. | 117 |
| abstract_inverted_index.discharge. | 96 |
| abstract_inverted_index.parameters | 64, 79, 91, 111 |
| abstract_inverted_index.prediction | 134 |
| abstract_inverted_index.regardless | 136 |
| abstract_inverted_index.Correlation | 61 |
| abstract_inverted_index.decomposing | 48 |
| abstract_inverted_index.degradation | 29, 139 |
| abstract_inverted_index.information | 18, 42 |
| abstract_inverted_index.literature, | 38 |
| abstract_inverted_index.predictions | 10 |
| abstract_inverted_index.demonstrates | 121 |
| abstract_inverted_index.optimization | 100 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.6836608 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |