EARTHQUAKE-DAMAGED REGIONS DETECTION FROM HIGH RESOLUTION IMAGE BASED ON SUPER-PIXEL SEGMENTATION AND DEEP LEARNING Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.5194/isprs-annals-v-3-2020-45-2020
Accurate detection and automatic processing of earthquake-damaged regions is essential for effective rescue and post-disaster reconstruction. In this study, we proposed a Combined Super-pixel Segmentation and AlexNet Detection approach (CSSAD) for automatically extracting damaged regions from post-earthquake high-resolution images. Simple Linear Iterative Clustering (SLIC) algorithm was used to segment the high resolution images to obtain more homogeneous geo-objects. Multiscale samples database, which took the different scale effect of damaged regions into account, was constructed based on the geometric centre of each super-pixel. AlexNet, which achieved the automatic extraction of high-level features and accurate identification of target geo-objects, was used to detect the damaged regions. To enhance the localization accuracy, the output of AlexNet was further refined using super-pixel segmentations and masked out of shadow and vegetation. Compared with traditional method, the proposed approach effectively reduces the false and missed detection ratio at least 10 percent.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5194/isprs-annals-v-3-2020-45-2020
- https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/V-3-2020/45/2020/isprs-annals-V-3-2020-45-2020.pdf
- OA Status
- diamond
- References
- 27
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3047472853
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3047472853Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5194/isprs-annals-v-3-2020-45-2020Digital Object Identifier
- Title
-
EARTHQUAKE-DAMAGED REGIONS DETECTION FROM HIGH RESOLUTION IMAGE BASED ON SUPER-PIXEL SEGMENTATION AND DEEP LEARNINGWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-08-03Full publication date if available
- Authors
-
C. Liu, Haigang Sui, Peng Yan, Hua Li, Qinghua LiList of authors in order
- Landing page
-
https://doi.org/10.5194/isprs-annals-v-3-2020-45-2020Publisher landing page
- PDF URL
-
https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/V-3-2020/45/2020/isprs-annals-V-3-2020-45-2020.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/V-3-2020/45/2020/isprs-annals-V-3-2020-45-2020.pdfDirect OA link when available
- Concepts
-
Computer science, Artificial intelligence, Pixel, Segmentation, Shadow (psychology), Pattern recognition (psychology), Computer vision, Cluster analysis, High resolution, Image segmentation, Remote sensing, Geology, Psychology, PsychotherapistTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
27Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3047472853 |
|---|---|
| doi | https://doi.org/10.5194/isprs-annals-v-3-2020-45-2020 |
| ids.doi | https://doi.org/10.5194/isprs-annals-v-3-2020-45-2020 |
| ids.mag | 3047472853 |
| ids.openalex | https://openalex.org/W3047472853 |
| fwci | 0.0 |
| type | article |
| title | EARTHQUAKE-DAMAGED REGIONS DETECTION FROM HIGH RESOLUTION IMAGE BASED ON SUPER-PIXEL SEGMENTATION AND DEEP LEARNING |
| biblio.issue | |
| biblio.volume | V-3-2020 |
| biblio.last_page | 51 |
| biblio.first_page | 45 |
| topics[0].id | https://openalex.org/T10689 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9976000189781189 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2214 |
| topics[0].subfield.display_name | Media Technology |
| topics[0].display_name | Remote-Sensing Image Classification |
| topics[1].id | https://openalex.org/T12157 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9747999906539917 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Geochemistry and Geologic Mapping |
| topics[2].id | https://openalex.org/T11775 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9358999729156494 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | COVID-19 diagnosis using AI |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7786616086959839 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7643660306930542 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C160633673 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6338455080986023 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[2].display_name | Pixel |
| concepts[3].id | https://openalex.org/C89600930 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6280714869499207 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[3].display_name | Segmentation |
| concepts[4].id | https://openalex.org/C117797892 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5720199346542358 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q286363 |
| concepts[4].display_name | Shadow (psychology) |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5662724375724792 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C31972630 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5658077001571655 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[6].display_name | Computer vision |
| concepts[7].id | https://openalex.org/C73555534 |
| concepts[7].level | 2 |
| concepts[7].score | 0.498110294342041 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[7].display_name | Cluster analysis |
| concepts[8].id | https://openalex.org/C3020199158 |
| concepts[8].level | 2 |
| concepts[8].score | 0.45149916410446167 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q210521 |
| concepts[8].display_name | High resolution |
| concepts[9].id | https://openalex.org/C124504099 |
| concepts[9].level | 3 |
| concepts[9].score | 0.43559718132019043 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[9].display_name | Image segmentation |
| concepts[10].id | https://openalex.org/C62649853 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3155153691768646 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[10].display_name | Remote sensing |
| concepts[11].id | https://openalex.org/C127313418 |
| concepts[11].level | 0 |
| concepts[11].score | 0.18323767185211182 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[11].display_name | Geology |
| concepts[12].id | https://openalex.org/C15744967 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[12].display_name | Psychology |
| concepts[13].id | https://openalex.org/C542102704 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q183257 |
| concepts[13].display_name | Psychotherapist |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7786616086959839 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.7643660306930542 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/pixel |
| keywords[2].score | 0.6338455080986023 |
| keywords[2].display_name | Pixel |
| keywords[3].id | https://openalex.org/keywords/segmentation |
| keywords[3].score | 0.6280714869499207 |
| keywords[3].display_name | Segmentation |
| keywords[4].id | https://openalex.org/keywords/shadow |
| keywords[4].score | 0.5720199346542358 |
| keywords[4].display_name | Shadow (psychology) |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.5662724375724792 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/computer-vision |
| keywords[6].score | 0.5658077001571655 |
| keywords[6].display_name | Computer vision |
| keywords[7].id | https://openalex.org/keywords/cluster-analysis |
| keywords[7].score | 0.498110294342041 |
| keywords[7].display_name | Cluster analysis |
| keywords[8].id | https://openalex.org/keywords/high-resolution |
| keywords[8].score | 0.45149916410446167 |
| keywords[8].display_name | High resolution |
| keywords[9].id | https://openalex.org/keywords/image-segmentation |
| keywords[9].score | 0.43559718132019043 |
| keywords[9].display_name | Image segmentation |
| keywords[10].id | https://openalex.org/keywords/remote-sensing |
| keywords[10].score | 0.3155153691768646 |
| keywords[10].display_name | Remote sensing |
| keywords[11].id | https://openalex.org/keywords/geology |
| keywords[11].score | 0.18323767185211182 |
| keywords[11].display_name | Geology |
| language | en |
| locations[0].id | doi:10.5194/isprs-annals-v-3-2020-45-2020 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2737735205 |
| locations[0].source.issn | 2194-9042, 2194-9050, 2196-6346 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2194-9042 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | ISPRS annals of the photogrammetry, remote sensing and spatial information sciences |
| locations[0].source.host_organization | https://openalex.org/P4310313756 |
| locations[0].source.host_organization_name | Copernicus Publications |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310313756 |
| locations[0].source.host_organization_lineage_names | Copernicus Publications |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/V-3-2020/45/2020/isprs-annals-V-3-2020-45-2020.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| locations[0].landing_page_url | https://doi.org/10.5194/isprs-annals-v-3-2020-45-2020 |
| locations[1].id | pmh:oai:doaj.org/article:fd9eafdf686e40eeb6ede92e7dc668ee |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol V-3-2020, Pp 45-51 (2020) |
| locations[1].landing_page_url | https://doaj.org/article/fd9eafdf686e40eeb6ede92e7dc668ee |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5023356219 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3910-0116 |
| authorships[0].author.display_name | C. Liu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I37461747, https://openalex.org/I4210118728 |
| authorships[0].affiliations[0].raw_affiliation_string | State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210118728 |
| authorships[0].institutions[0].ror | https://ror.org/02bpap860 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210118728 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing |
| authorships[0].institutions[1].id | https://openalex.org/I37461747 |
| authorships[0].institutions[1].ror | https://ror.org/033vjfk17 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I37461747 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Wuhan University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | C. Liu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China |
| authorships[1].author.id | https://openalex.org/A5052272301 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4405-3553 |
| authorships[1].author.display_name | Haigang Sui |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I37461747, https://openalex.org/I4210118728 |
| authorships[1].affiliations[0].raw_affiliation_string | State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210118728 |
| authorships[1].institutions[0].ror | https://ror.org/02bpap860 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210118728 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing |
| authorships[1].institutions[1].id | https://openalex.org/I37461747 |
| authorships[1].institutions[1].ror | https://ror.org/033vjfk17 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I37461747 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Wuhan University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | H. Sui |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China |
| authorships[2].author.id | https://openalex.org/A5013741685 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4929-7621 |
| authorships[2].author.display_name | Peng Yan |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I37461747, https://openalex.org/I4210118728 |
| authorships[2].affiliations[0].raw_affiliation_string | State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210118728 |
| authorships[2].institutions[0].ror | https://ror.org/02bpap860 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210118728 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing |
| authorships[2].institutions[1].id | https://openalex.org/I37461747 |
| authorships[2].institutions[1].ror | https://ror.org/033vjfk17 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I37461747 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Wuhan University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Y. Peng |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China |
| authorships[3].author.id | https://openalex.org/A5100726322 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0745-035X |
| authorships[3].author.display_name | Hua Li |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I204823248 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Resources & Environment, Huazhong Agriculture University, Wuhan 430070, China |
| authorships[3].institutions[0].id | https://openalex.org/I204823248 |
| authorships[3].institutions[0].ror | https://ror.org/023b72294 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I204823248 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Huazhong Agricultural University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | L. Hua |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Resources & Environment, Huazhong Agriculture University, Wuhan 430070, China |
| authorships[4].author.id | https://openalex.org/A5024544044 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7484-9291 |
| authorships[4].author.display_name | Qinghua Li |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210100278 |
| authorships[4].affiliations[0].raw_affiliation_string | Hubei Geomatics Information Center (Hubei Research Institute of Beidou Satellite Navigation Applied Technology), Wuhan 4300779, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210100278 |
| authorships[4].institutions[0].ror | https://ror.org/0188rvx33 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210100278 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Beijing Satellite Navigation Center |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Q. Li |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Hubei Geomatics Information Center (Hubei Research Institute of Beidou Satellite Navigation Applied Technology), Wuhan 4300779, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/V-3-2020/45/2020/isprs-annals-V-3-2020-45-2020.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | EARTHQUAKE-DAMAGED REGIONS DETECTION FROM HIGH RESOLUTION IMAGE BASED ON SUPER-PIXEL SEGMENTATION AND DEEP LEARNING |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10689 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9976000189781189 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2214 |
| primary_topic.subfield.display_name | Media Technology |
| primary_topic.display_name | Remote-Sensing Image Classification |
| related_works | https://openalex.org/W2893218741, https://openalex.org/W2558319350, https://openalex.org/W1492594177, https://openalex.org/W1842742976, https://openalex.org/W2803235238, https://openalex.org/W399661440, https://openalex.org/W410356389, https://openalex.org/W639782700, https://openalex.org/W4285411112, https://openalex.org/W1522196789 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.5194/isprs-annals-v-3-2020-45-2020 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2737735205 |
| best_oa_location.source.issn | 2194-9042, 2194-9050, 2196-6346 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2194-9042 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | ISPRS annals of the photogrammetry, remote sensing and spatial information sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310313756 |
| best_oa_location.source.host_organization_name | Copernicus Publications |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310313756 |
| best_oa_location.source.host_organization_lineage_names | Copernicus Publications |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/V-3-2020/45/2020/isprs-annals-V-3-2020-45-2020.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.5194/isprs-annals-v-3-2020-45-2020 |
| primary_location.id | doi:10.5194/isprs-annals-v-3-2020-45-2020 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2737735205 |
| primary_location.source.issn | 2194-9042, 2194-9050, 2196-6346 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2194-9042 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | ISPRS annals of the photogrammetry, remote sensing and spatial information sciences |
| primary_location.source.host_organization | https://openalex.org/P4310313756 |
| primary_location.source.host_organization_name | Copernicus Publications |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310313756 |
| primary_location.source.host_organization_lineage_names | Copernicus Publications |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/V-3-2020/45/2020/isprs-annals-V-3-2020-45-2020.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| primary_location.landing_page_url | https://doi.org/10.5194/isprs-annals-v-3-2020-45-2020 |
| publication_date | 2020-08-03 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W4200169950, https://openalex.org/W4233838438, https://openalex.org/W4200394859, https://openalex.org/W2361749505, https://openalex.org/W2883699282, https://openalex.org/W4211019019, https://openalex.org/W2745185400, https://openalex.org/W2035971915, https://openalex.org/W2906713341, https://openalex.org/W2294798709, https://openalex.org/W2897992168, https://openalex.org/W2577537809, https://openalex.org/W2351150160, https://openalex.org/W4299961064, https://openalex.org/W2575283562, https://openalex.org/W2128866545, https://openalex.org/W2608688176, https://openalex.org/W2610211276, https://openalex.org/W1971287452, https://openalex.org/W2748297756, https://openalex.org/W2903669122, https://openalex.org/W2592849532, https://openalex.org/W2914757358, https://openalex.org/W2603957443, https://openalex.org/W2757629480, https://openalex.org/W2793395720, https://openalex.org/W2410019460 |
| referenced_works_count | 27 |
| abstract_inverted_index.a | 22 |
| abstract_inverted_index.10 | 144 |
| abstract_inverted_index.In | 17 |
| abstract_inverted_index.To | 105 |
| abstract_inverted_index.at | 142 |
| abstract_inverted_index.is | 9 |
| abstract_inverted_index.of | 6, 68, 80, 89, 95, 112, 123 |
| abstract_inverted_index.on | 76 |
| abstract_inverted_index.to | 48, 54, 100 |
| abstract_inverted_index.we | 20 |
| abstract_inverted_index.and | 3, 14, 26, 92, 120, 125, 138 |
| abstract_inverted_index.for | 11, 31 |
| abstract_inverted_index.out | 122 |
| abstract_inverted_index.the | 50, 64, 77, 86, 102, 107, 110, 131, 136 |
| abstract_inverted_index.was | 46, 73, 98, 114 |
| abstract_inverted_index.each | 81 |
| abstract_inverted_index.from | 36 |
| abstract_inverted_index.high | 51 |
| abstract_inverted_index.into | 71 |
| abstract_inverted_index.more | 56 |
| abstract_inverted_index.this | 18 |
| abstract_inverted_index.took | 63 |
| abstract_inverted_index.used | 47, 99 |
| abstract_inverted_index.with | 128 |
| abstract_inverted_index.based | 75 |
| abstract_inverted_index.false | 137 |
| abstract_inverted_index.least | 143 |
| abstract_inverted_index.ratio | 141 |
| abstract_inverted_index.scale | 66 |
| abstract_inverted_index.using | 117 |
| abstract_inverted_index.which | 62, 84 |
| abstract_inverted_index.(SLIC) | 44 |
| abstract_inverted_index.Linear | 41 |
| abstract_inverted_index.Simple | 40 |
| abstract_inverted_index.centre | 79 |
| abstract_inverted_index.detect | 101 |
| abstract_inverted_index.effect | 67 |
| abstract_inverted_index.images | 53 |
| abstract_inverted_index.masked | 121 |
| abstract_inverted_index.missed | 139 |
| abstract_inverted_index.obtain | 55 |
| abstract_inverted_index.output | 111 |
| abstract_inverted_index.rescue | 13 |
| abstract_inverted_index.shadow | 124 |
| abstract_inverted_index.study, | 19 |
| abstract_inverted_index.target | 96 |
| abstract_inverted_index.(CSSAD) | 30 |
| abstract_inverted_index.AlexNet | 27, 113 |
| abstract_inverted_index.damaged | 34, 69, 103 |
| abstract_inverted_index.enhance | 106 |
| abstract_inverted_index.further | 115 |
| abstract_inverted_index.images. | 39 |
| abstract_inverted_index.method, | 130 |
| abstract_inverted_index.reduces | 135 |
| abstract_inverted_index.refined | 116 |
| abstract_inverted_index.regions | 8, 35, 70 |
| abstract_inverted_index.samples | 60 |
| abstract_inverted_index.segment | 49 |
| abstract_inverted_index.Accurate | 1 |
| abstract_inverted_index.AlexNet, | 83 |
| abstract_inverted_index.Combined | 23 |
| abstract_inverted_index.Compared | 127 |
| abstract_inverted_index.account, | 72 |
| abstract_inverted_index.accurate | 93 |
| abstract_inverted_index.achieved | 85 |
| abstract_inverted_index.approach | 29, 133 |
| abstract_inverted_index.features | 91 |
| abstract_inverted_index.percent. | 145 |
| abstract_inverted_index.proposed | 21, 132 |
| abstract_inverted_index.regions. | 104 |
| abstract_inverted_index.Abstract. | 0 |
| abstract_inverted_index.Detection | 28 |
| abstract_inverted_index.Iterative | 42 |
| abstract_inverted_index.accuracy, | 109 |
| abstract_inverted_index.algorithm | 45 |
| abstract_inverted_index.automatic | 4, 87 |
| abstract_inverted_index.database, | 61 |
| abstract_inverted_index.detection | 2, 140 |
| abstract_inverted_index.different | 65 |
| abstract_inverted_index.effective | 12 |
| abstract_inverted_index.essential | 10 |
| abstract_inverted_index.geometric | 78 |
| abstract_inverted_index.Clustering | 43 |
| abstract_inverted_index.Multiscale | 59 |
| abstract_inverted_index.extracting | 33 |
| abstract_inverted_index.extraction | 88 |
| abstract_inverted_index.high-level | 90 |
| abstract_inverted_index.processing | 5 |
| abstract_inverted_index.resolution | 52 |
| abstract_inverted_index.Super-pixel | 24 |
| abstract_inverted_index.constructed | 74 |
| abstract_inverted_index.effectively | 134 |
| abstract_inverted_index.homogeneous | 57 |
| abstract_inverted_index.super-pixel | 118 |
| abstract_inverted_index.traditional | 129 |
| abstract_inverted_index.vegetation. | 126 |
| abstract_inverted_index.Segmentation | 25 |
| abstract_inverted_index.geo-objects, | 97 |
| abstract_inverted_index.geo-objects. | 58 |
| abstract_inverted_index.localization | 108 |
| abstract_inverted_index.super-pixel. | 82 |
| abstract_inverted_index.automatically | 32 |
| abstract_inverted_index.post-disaster | 15 |
| abstract_inverted_index.segmentations | 119 |
| abstract_inverted_index.identification | 94 |
| abstract_inverted_index.high-resolution | 38 |
| abstract_inverted_index.post-earthquake | 37 |
| abstract_inverted_index.reconstruction. | 16 |
| abstract_inverted_index.earthquake-damaged | 7 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.7200000286102295 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.22581138 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |