ECORE: Energy-Conscious Optimized Routing for Deep Learning Models at the Edge Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2507.06011
Edge computing enables data processing closer to the source, significantly reducing latency, an essential requirement for real-time vision-based analytics such as object detection in surveillance and smart city environments. However, these tasks place substantial demands on resource-constrained edge devices, making the joint optimization of energy consumption and detection accuracy critical. To address this challenge, we propose ECORE, a framework that integrates multiple dynamic routing strategies, including a novel estimation-based techniques and an innovative greedy selection algorithm, to direct image processing requests to the most suitable edge device-model pair. ECORE dynamically balances energy efficiency and detection performance based on object characteristics. We evaluate our framework through extensive experiments on real-world datasets, comparing against widely used baseline techniques. The evaluation leverages established object detection models (YOLO, SSD, EfficientDet) and diverse edge platforms, including Jetson Orin Nano, Raspberry Pi 4 and 5, and TPU accelerators. Results demonstrate that our proposed context-aware routing strategies can reduce energy consumption and latency by 35% and 49%, respectively, while incurring only a 2% loss in detection accuracy compared to accuracy-centric methods.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2507.06011
- https://arxiv.org/pdf/2507.06011
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416062053
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416062053Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2507.06011Digital Object Identifier
- Title
-
ECORE: Energy-Conscious Optimized Routing for Deep Learning Models at the EdgeWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-08Full publication date if available
- Authors
-
Daghash K. Alqahtani, Maria A. Rodriguez, Muhammad Aamir Cheema, Hamid Rezatofighi, Adel N. ToosiList of authors in order
- Landing page
-
https://arxiv.org/abs/2507.06011Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2507.06011Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2507.06011Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416062053 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2507.06011 |
| ids.doi | https://doi.org/10.48550/arxiv.2507.06011 |
| ids.openalex | https://openalex.org/W4416062053 |
| fwci | |
| type | preprint |
| title | ECORE: Energy-Conscious Optimized Routing for Deep Learning Models at the Edge |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2507.06011 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2507.06011 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2507.06011 |
| locations[1].id | doi:10.48550/arxiv.2507.06011 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2507.06011 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5098960058 |
| authorships[0].author.orcid | https://orcid.org/0009-0001-5309-6996 |
| authorships[0].author.display_name | Daghash K. Alqahtani |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Alqahtani, Daghash K. |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5032796449 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2831-8526 |
| authorships[1].author.display_name | Maria A. Rodriguez |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Rodriguez, Maria A. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5047549903 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2139-9121 |
| authorships[2].author.display_name | Muhammad Aamir Cheema |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Cheema, Muhammad Aamir |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5099282607 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Hamid Rezatofighi |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Rezatofighi, Hamid |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5083902835 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5655-5337 |
| authorships[4].author.display_name | Adel N. Toosi |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Toosi, Adel N. |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2507.06011 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | ECORE: Energy-Conscious Optimized Routing for Deep Learning Models at the Edge |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T10:25:07.004793 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2507.06011 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2507.06011 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2507.06011 |
| primary_location.id | pmh:oai:arXiv.org:2507.06011 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2507.06011 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2507.06011 |
| publication_date | 2025-07-08 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.4 | 136 |
| abstract_inverted_index.a | 57, 66, 164 |
| abstract_inverted_index.2% | 165 |
| abstract_inverted_index.5, | 138 |
| abstract_inverted_index.Pi | 135 |
| abstract_inverted_index.To | 50 |
| abstract_inverted_index.We | 100 |
| abstract_inverted_index.an | 12, 71 |
| abstract_inverted_index.as | 20 |
| abstract_inverted_index.by | 156 |
| abstract_inverted_index.in | 23, 167 |
| abstract_inverted_index.of | 43 |
| abstract_inverted_index.on | 35, 97, 107 |
| abstract_inverted_index.to | 6, 76, 81, 171 |
| abstract_inverted_index.we | 54 |
| abstract_inverted_index.35% | 157 |
| abstract_inverted_index.TPU | 140 |
| abstract_inverted_index.The | 116 |
| abstract_inverted_index.and | 25, 46, 70, 93, 126, 137, 139, 154, 158 |
| abstract_inverted_index.can | 150 |
| abstract_inverted_index.for | 15 |
| abstract_inverted_index.our | 102, 145 |
| abstract_inverted_index.the | 7, 40, 82 |
| abstract_inverted_index.49%, | 159 |
| abstract_inverted_index.Edge | 0 |
| abstract_inverted_index.Orin | 132 |
| abstract_inverted_index.SSD, | 124 |
| abstract_inverted_index.city | 27 |
| abstract_inverted_index.data | 3 |
| abstract_inverted_index.edge | 37, 85, 128 |
| abstract_inverted_index.loss | 166 |
| abstract_inverted_index.most | 83 |
| abstract_inverted_index.only | 163 |
| abstract_inverted_index.such | 19 |
| abstract_inverted_index.that | 59, 144 |
| abstract_inverted_index.this | 52 |
| abstract_inverted_index.used | 113 |
| abstract_inverted_index.ECORE | 88 |
| abstract_inverted_index.Nano, | 133 |
| abstract_inverted_index.based | 96 |
| abstract_inverted_index.image | 78 |
| abstract_inverted_index.joint | 41 |
| abstract_inverted_index.novel | 67 |
| abstract_inverted_index.pair. | 87 |
| abstract_inverted_index.place | 32 |
| abstract_inverted_index.smart | 26 |
| abstract_inverted_index.tasks | 31 |
| abstract_inverted_index.these | 30 |
| abstract_inverted_index.while | 161 |
| abstract_inverted_index.(YOLO, | 123 |
| abstract_inverted_index.ECORE, | 56 |
| abstract_inverted_index.Jetson | 131 |
| abstract_inverted_index.closer | 5 |
| abstract_inverted_index.direct | 77 |
| abstract_inverted_index.energy | 44, 91, 152 |
| abstract_inverted_index.greedy | 73 |
| abstract_inverted_index.making | 39 |
| abstract_inverted_index.models | 122 |
| abstract_inverted_index.object | 21, 98, 120 |
| abstract_inverted_index.reduce | 151 |
| abstract_inverted_index.widely | 112 |
| abstract_inverted_index.Results | 142 |
| abstract_inverted_index.address | 51 |
| abstract_inverted_index.against | 111 |
| abstract_inverted_index.demands | 34 |
| abstract_inverted_index.diverse | 127 |
| abstract_inverted_index.dynamic | 62 |
| abstract_inverted_index.enables | 2 |
| abstract_inverted_index.latency | 155 |
| abstract_inverted_index.propose | 55 |
| abstract_inverted_index.routing | 63, 148 |
| abstract_inverted_index.source, | 8 |
| abstract_inverted_index.through | 104 |
| abstract_inverted_index.However, | 29 |
| abstract_inverted_index.accuracy | 48, 169 |
| abstract_inverted_index.balances | 90 |
| abstract_inverted_index.baseline | 114 |
| abstract_inverted_index.compared | 170 |
| abstract_inverted_index.devices, | 38 |
| abstract_inverted_index.evaluate | 101 |
| abstract_inverted_index.latency, | 11 |
| abstract_inverted_index.methods. | 173 |
| abstract_inverted_index.multiple | 61 |
| abstract_inverted_index.proposed | 146 |
| abstract_inverted_index.reducing | 10 |
| abstract_inverted_index.requests | 80 |
| abstract_inverted_index.suitable | 84 |
| abstract_inverted_index.Raspberry | 134 |
| abstract_inverted_index.analytics | 18 |
| abstract_inverted_index.comparing | 110 |
| abstract_inverted_index.computing | 1 |
| abstract_inverted_index.critical. | 49 |
| abstract_inverted_index.datasets, | 109 |
| abstract_inverted_index.detection | 22, 47, 94, 121, 168 |
| abstract_inverted_index.essential | 13 |
| abstract_inverted_index.extensive | 105 |
| abstract_inverted_index.framework | 58, 103 |
| abstract_inverted_index.including | 65, 130 |
| abstract_inverted_index.incurring | 162 |
| abstract_inverted_index.leverages | 118 |
| abstract_inverted_index.real-time | 16 |
| abstract_inverted_index.selection | 74 |
| abstract_inverted_index.algorithm, | 75 |
| abstract_inverted_index.challenge, | 53 |
| abstract_inverted_index.efficiency | 92 |
| abstract_inverted_index.evaluation | 117 |
| abstract_inverted_index.innovative | 72 |
| abstract_inverted_index.integrates | 60 |
| abstract_inverted_index.platforms, | 129 |
| abstract_inverted_index.processing | 4, 79 |
| abstract_inverted_index.real-world | 108 |
| abstract_inverted_index.strategies | 149 |
| abstract_inverted_index.techniques | 69 |
| abstract_inverted_index.consumption | 45, 153 |
| abstract_inverted_index.demonstrate | 143 |
| abstract_inverted_index.dynamically | 89 |
| abstract_inverted_index.established | 119 |
| abstract_inverted_index.experiments | 106 |
| abstract_inverted_index.performance | 95 |
| abstract_inverted_index.requirement | 14 |
| abstract_inverted_index.strategies, | 64 |
| abstract_inverted_index.substantial | 33 |
| abstract_inverted_index.techniques. | 115 |
| abstract_inverted_index.device-model | 86 |
| abstract_inverted_index.optimization | 42 |
| abstract_inverted_index.surveillance | 24 |
| abstract_inverted_index.vision-based | 17 |
| abstract_inverted_index.EfficientDet) | 125 |
| abstract_inverted_index.accelerators. | 141 |
| abstract_inverted_index.context-aware | 147 |
| abstract_inverted_index.environments. | 28 |
| abstract_inverted_index.respectively, | 160 |
| abstract_inverted_index.significantly | 9 |
| abstract_inverted_index.accuracy-centric | 172 |
| abstract_inverted_index.characteristics. | 99 |
| abstract_inverted_index.estimation-based | 68 |
| abstract_inverted_index.resource-constrained | 36 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |