Edge computing at sea: high-throughput classification of in-situ plankton imagery for adaptive sampling Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3389/fmars.2023.1187771
The small sizes of most marine plankton necessitate that plankton sampling occur on fine spatial scales, yet our questions often span large spatial areas. Underwater imaging can provide a solution to this sampling conundrum but collects large quantities of data that require an automated approach to image analysis. Machine learning for plankton classification, and high-performance computing (HPC) infrastructure, are critical to rapid image processing; however, these assets, especially HPC infrastructure, are only available post-cruise leading to an ‘after-the-fact’ view of plankton community structure. To be responsive to the often-ephemeral nature of oceanographic features and species assemblages in highly dynamic current systems, real-time data are key for adaptive oceanographic sampling. Here we used the new In-situ Ichthyoplankton Imaging System-3 (ISIIS-3) in the Northern California Current (NCC) in conjunction with an edge server to classify imaged plankton in real-time into 170 classes. This capability together with data visualization in a heavy.ai dashboard makes adaptive real-time decision-making and sampling at sea possible. Dual ISIIS-Deep-focus Particle Imager (DPI) cameras sample 180 L s -1 , leading to >10 GB of video per min. Imaged organisms are in the size range of 250 µm to 15 cm and include abundant crustaceans, fragile taxa (e.g., hydromedusae, salps), faster swimmers (e.g., krill), and rarer taxa (e.g., larval fishes). A deep learning pipeline deployed on the edge server used multithreaded CPU-based segmentation and GPU-based classification to process the imagery. AVI videos contain 50 sec of data and can contain between 23,000 - 225,000 particle and plankton segments. Processing one AVI through segmentation and classification takes on average 3.75 mins, depending on biological productivity. A heavyDB database monitors for newly processed data and is linked to a heavy.ai dashboard for interactive data visualization. We describe several examples where imaging, AI, and data visualization enable adaptive sampling that can have a transformative effect on oceanography. We envision AI-enabled adaptive sampling to have a high impact on our ability to resolve biological responses to important oceanographic features in the NCC, such as oxygen minimum zones, or harmful algal bloom thin layers, which affect the health of the ecosystem, fisheries, and local communities.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3389/fmars.2023.1187771
- https://www.frontiersin.org/articles/10.3389/fmars.2023.1187771/pdf
- OA Status
- gold
- Cited By
- 11
- References
- 41
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4380046216
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4380046216Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/fmars.2023.1187771Digital Object Identifier
- Title
-
Edge computing at sea: high-throughput classification of in-situ plankton imagery for adaptive samplingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-08Full publication date if available
- Authors
-
Moritz S. Schmid, Dominic Daprano, Malhar M. Damle, Christopher M. Sullivan, Su Sponaugle, Charles Cousin, Cédric M. Guigand, Robert K. CowenList of authors in order
- Landing page
-
https://doi.org/10.3389/fmars.2023.1187771Publisher landing page
- PDF URL
-
https://www.frontiersin.org/articles/10.3389/fmars.2023.1187771/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.frontiersin.org/articles/10.3389/fmars.2023.1187771/pdfDirect OA link when available
- Concepts
-
Plankton, Sampling (signal processing), Computer science, Artificial intelligence, Real-time computing, Oceanography, Computer vision, Geology, Filter (signal processing)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
11Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 5, 2023: 2Per-year citation counts (last 5 years)
- References (count)
-
41Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4380046216 |
|---|---|
| doi | https://doi.org/10.3389/fmars.2023.1187771 |
| ids.doi | https://doi.org/10.3389/fmars.2023.1187771 |
| ids.openalex | https://openalex.org/W4380046216 |
| fwci | 3.32759062 |
| type | article |
| title | Edge computing at sea: high-throughput classification of in-situ plankton imagery for adaptive sampling |
| biblio.issue | |
| biblio.volume | 10 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10341 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9947999715805054 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2303 |
| topics[0].subfield.display_name | Ecology |
| topics[0].display_name | Coral and Marine Ecosystems Studies |
| topics[1].id | https://openalex.org/T11192 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9890000224113464 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2212 |
| topics[1].subfield.display_name | Ocean Engineering |
| topics[1].display_name | Underwater Vehicles and Communication Systems |
| topics[2].id | https://openalex.org/T10032 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.9879999756813049 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1910 |
| topics[2].subfield.display_name | Oceanography |
| topics[2].display_name | Marine and coastal ecosystems |
| is_xpac | False |
| apc_list.value | 2950 |
| apc_list.currency | USD |
| apc_list.value_usd | 2950 |
| apc_paid.value | 2950 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2950 |
| concepts[0].id | https://openalex.org/C108469399 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6298368573188782 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q25367 |
| concepts[0].display_name | Plankton |
| concepts[1].id | https://openalex.org/C140779682 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6294983625411987 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q210868 |
| concepts[1].display_name | Sampling (signal processing) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5978513956069946 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3687177300453186 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C79403827 |
| concepts[4].level | 1 |
| concepts[4].score | 0.33613163232803345 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[4].display_name | Real-time computing |
| concepts[5].id | https://openalex.org/C111368507 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3175634741783142 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q43518 |
| concepts[5].display_name | Oceanography |
| concepts[6].id | https://openalex.org/C31972630 |
| concepts[6].level | 1 |
| concepts[6].score | 0.20508688688278198 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[6].display_name | Computer vision |
| concepts[7].id | https://openalex.org/C127313418 |
| concepts[7].level | 0 |
| concepts[7].score | 0.13644790649414062 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[7].display_name | Geology |
| concepts[8].id | https://openalex.org/C106131492 |
| concepts[8].level | 2 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[8].display_name | Filter (signal processing) |
| keywords[0].id | https://openalex.org/keywords/plankton |
| keywords[0].score | 0.6298368573188782 |
| keywords[0].display_name | Plankton |
| keywords[1].id | https://openalex.org/keywords/sampling |
| keywords[1].score | 0.6294983625411987 |
| keywords[1].display_name | Sampling (signal processing) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5978513956069946 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.3687177300453186 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/real-time-computing |
| keywords[4].score | 0.33613163232803345 |
| keywords[4].display_name | Real-time computing |
| keywords[5].id | https://openalex.org/keywords/oceanography |
| keywords[5].score | 0.3175634741783142 |
| keywords[5].display_name | Oceanography |
| keywords[6].id | https://openalex.org/keywords/computer-vision |
| keywords[6].score | 0.20508688688278198 |
| keywords[6].display_name | Computer vision |
| keywords[7].id | https://openalex.org/keywords/geology |
| keywords[7].score | 0.13644790649414062 |
| keywords[7].display_name | Geology |
| language | en |
| locations[0].id | doi:10.3389/fmars.2023.1187771 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2596539584 |
| locations[0].source.issn | 2296-7745 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2296-7745 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Marine Science |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_lineage_names | Frontiers Media |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.frontiersin.org/articles/10.3389/fmars.2023.1187771/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Marine Science |
| locations[0].landing_page_url | https://doi.org/10.3389/fmars.2023.1187771 |
| locations[1].id | pmh:oai:doaj.org/article:5906644abb3942f58c6bd86a69ba7df0 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Frontiers in Marine Science, Vol 10 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/5906644abb3942f58c6bd86a69ba7df0 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5021934484 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7742-2338 |
| authorships[0].author.display_name | Moritz S. Schmid |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I131249849 |
| authorships[0].affiliations[0].raw_affiliation_string | Hatfield Marine Science Center, Oregon State University, Newport, OR, United States |
| authorships[0].institutions[0].id | https://openalex.org/I131249849 |
| authorships[0].institutions[0].ror | https://ror.org/00ysfqy60 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I131249849 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Oregon State University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Moritz S. Schmid |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Hatfield Marine Science Center, Oregon State University, Newport, OR, United States |
| authorships[1].author.id | https://openalex.org/A5038939224 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Dominic Daprano |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I131249849 |
| authorships[1].affiliations[0].raw_affiliation_string | Center for Quantitative and Life Sciences, Oregon State University, Corvallis, OR, United States |
| authorships[1].institutions[0].id | https://openalex.org/I131249849 |
| authorships[1].institutions[0].ror | https://ror.org/00ysfqy60 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I131249849 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Oregon State University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Dominic Daprano |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Center for Quantitative and Life Sciences, Oregon State University, Corvallis, OR, United States |
| authorships[2].author.id | https://openalex.org/A5092125003 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Malhar M. Damle |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I131249849 |
| authorships[2].affiliations[0].raw_affiliation_string | Center for Quantitative and Life Sciences, Oregon State University, Corvallis, OR, United States |
| authorships[2].institutions[0].id | https://openalex.org/I131249849 |
| authorships[2].institutions[0].ror | https://ror.org/00ysfqy60 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I131249849 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Oregon State University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Malhar M. Damle |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Center for Quantitative and Life Sciences, Oregon State University, Corvallis, OR, United States |
| authorships[3].author.id | https://openalex.org/A5060397377 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3344-5201 |
| authorships[3].author.display_name | Christopher M. Sullivan |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I131249849 |
| authorships[3].affiliations[0].raw_affiliation_string | Center for Quantitative and Life Sciences, Oregon State University, Corvallis, OR, United States |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I131249849 |
| authorships[3].affiliations[1].raw_affiliation_string | College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States |
| authorships[3].institutions[0].id | https://openalex.org/I131249849 |
| authorships[3].institutions[0].ror | https://ror.org/00ysfqy60 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I131249849 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Oregon State University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Christopher M. Sullivan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Center for Quantitative and Life Sciences, Oregon State University, Corvallis, OR, United States, College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States |
| authorships[4].author.id | https://openalex.org/A5087778766 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5562-2857 |
| authorships[4].author.display_name | Su Sponaugle |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I131249849 |
| authorships[4].affiliations[0].raw_affiliation_string | Hatfield Marine Science Center, Oregon State University, Newport, OR, United States |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I131249849 |
| authorships[4].affiliations[1].raw_affiliation_string | Department of Integrative Biology, Oregon State University, Corvallis, OR, United States |
| authorships[4].institutions[0].id | https://openalex.org/I131249849 |
| authorships[4].institutions[0].ror | https://ror.org/00ysfqy60 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I131249849 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Oregon State University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Su Sponaugle |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Integrative Biology, Oregon State University, Corvallis, OR, United States, Hatfield Marine Science Center, Oregon State University, Newport, OR, United States |
| authorships[5].author.id | https://openalex.org/A5090630917 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Charles Cousin |
| authorships[5].affiliations[0].raw_affiliation_string | Bellamare LLC, San Diego, CA, United States |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Charles Cousin |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Bellamare LLC, San Diego, CA, United States |
| authorships[6].author.id | https://openalex.org/A5011646676 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-2641-8803 |
| authorships[6].author.display_name | Cédric M. Guigand |
| authorships[6].affiliations[0].raw_affiliation_string | Bellamare LLC, San Diego, CA, United States |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Cedric Guigand |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Bellamare LLC, San Diego, CA, United States |
| authorships[7].author.id | https://openalex.org/A5014229882 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-1998-8015 |
| authorships[7].author.display_name | Robert K. Cowen |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I131249849 |
| authorships[7].affiliations[0].raw_affiliation_string | Hatfield Marine Science Center, Oregon State University, Newport, OR, United States |
| authorships[7].institutions[0].id | https://openalex.org/I131249849 |
| authorships[7].institutions[0].ror | https://ror.org/00ysfqy60 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I131249849 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Oregon State University |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Robert K. Cowen |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Hatfield Marine Science Center, Oregon State University, Newport, OR, United States |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.frontiersin.org/articles/10.3389/fmars.2023.1187771/pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Edge computing at sea: high-throughput classification of in-situ plankton imagery for adaptive sampling |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10341 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9947999715805054 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2303 |
| primary_topic.subfield.display_name | Ecology |
| primary_topic.display_name | Coral and Marine Ecosystems Studies |
| related_works | https://openalex.org/W3214635564, https://openalex.org/W2756007911, https://openalex.org/W2382390413, https://openalex.org/W2020104965, https://openalex.org/W2145886400, https://openalex.org/W4297537838, https://openalex.org/W2773451184, https://openalex.org/W3179774129, https://openalex.org/W619262338, https://openalex.org/W2024032921 |
| cited_by_count | 11 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3389/fmars.2023.1187771 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2596539584 |
| best_oa_location.source.issn | 2296-7745 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2296-7745 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Marine Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_lineage_names | Frontiers Media |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.frontiersin.org/articles/10.3389/fmars.2023.1187771/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Marine Science |
| best_oa_location.landing_page_url | https://doi.org/10.3389/fmars.2023.1187771 |
| primary_location.id | doi:10.3389/fmars.2023.1187771 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2596539584 |
| primary_location.source.issn | 2296-7745 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2296-7745 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Marine Science |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_lineage_names | Frontiers Media |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.frontiersin.org/articles/10.3389/fmars.2023.1187771/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Marine Science |
| primary_location.landing_page_url | https://doi.org/10.3389/fmars.2023.1187771 |
| publication_date | 2023-06-08 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2179145304, https://openalex.org/W4297537838, https://openalex.org/W3043104318, https://openalex.org/W3084805082, https://openalex.org/W2971982711, https://openalex.org/W1976259602, https://openalex.org/W2958223128, https://openalex.org/W3198236624, https://openalex.org/W3110709238, https://openalex.org/W2123898922, https://openalex.org/W2346813889, https://openalex.org/W2913579070, https://openalex.org/W4294583853, https://openalex.org/W3022504766, https://openalex.org/W2135232396, https://openalex.org/W4310022654, https://openalex.org/W6735463952, https://openalex.org/W2329432896, https://openalex.org/W1964484554, https://openalex.org/W3197522065, https://openalex.org/W4210598935, https://openalex.org/W2941857669, https://openalex.org/W2896018215, https://openalex.org/W4280507785, https://openalex.org/W2124404372, https://openalex.org/W3199191454, https://openalex.org/W2978129862, https://openalex.org/W2907931776, https://openalex.org/W3092144848, https://openalex.org/W4281750812, https://openalex.org/W4318983122, https://openalex.org/W2089347253, https://openalex.org/W3212443810, https://openalex.org/W3002059990, https://openalex.org/W6950486627, https://openalex.org/W6893732858, https://openalex.org/W4372340956, https://openalex.org/W3003836025, https://openalex.org/W3114257451, https://openalex.org/W3025817405, https://openalex.org/W2091250681 |
| referenced_works_count | 41 |
| abstract_inverted_index., | 170 |
| abstract_inverted_index.- | 243 |
| abstract_inverted_index.A | 211, 265 |
| abstract_inverted_index.L | 167 |
| abstract_inverted_index.a | 28, 147, 277, 300, 312 |
| abstract_inverted_index.s | 168 |
| abstract_inverted_index.-1 | 169 |
| abstract_inverted_index.15 | 190 |
| abstract_inverted_index.50 | 234 |
| abstract_inverted_index.GB | 174 |
| abstract_inverted_index.To | 83 |
| abstract_inverted_index.We | 284, 305 |
| abstract_inverted_index.an | 42, 76, 128 |
| abstract_inverted_index.as | 330 |
| abstract_inverted_index.at | 156 |
| abstract_inverted_index.be | 84 |
| abstract_inverted_index.cm | 191 |
| abstract_inverted_index.in | 96, 119, 125, 135, 146, 182, 326 |
| abstract_inverted_index.is | 274 |
| abstract_inverted_index.of | 3, 38, 79, 90, 175, 186, 236, 344 |
| abstract_inverted_index.on | 12, 216, 257, 262, 303, 315 |
| abstract_inverted_index.or | 334 |
| abstract_inverted_index.to | 30, 45, 60, 75, 86, 131, 172, 189, 227, 276, 310, 318, 322 |
| abstract_inverted_index.we | 110 |
| abstract_inverted_index.170 | 138 |
| abstract_inverted_index.180 | 166 |
| abstract_inverted_index.250 | 187 |
| abstract_inverted_index.AI, | 290 |
| abstract_inverted_index.AVI | 231, 251 |
| abstract_inverted_index.HPC | 68 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 53, 93, 154, 192, 205, 224, 238, 246, 254, 273, 291, 348 |
| abstract_inverted_index.are | 58, 70, 103, 181 |
| abstract_inverted_index.but | 34 |
| abstract_inverted_index.can | 26, 239, 298 |
| abstract_inverted_index.for | 50, 105, 269, 280 |
| abstract_inverted_index.key | 104 |
| abstract_inverted_index.new | 113 |
| abstract_inverted_index.one | 250 |
| abstract_inverted_index.our | 17, 316 |
| abstract_inverted_index.per | 177 |
| abstract_inverted_index.sea | 157 |
| abstract_inverted_index.sec | 235 |
| abstract_inverted_index.the | 87, 112, 120, 183, 217, 229, 327, 342, 345 |
| abstract_inverted_index.yet | 16 |
| abstract_inverted_index.µm | 188 |
| abstract_inverted_index.3.75 | 259 |
| abstract_inverted_index.Dual | 159 |
| abstract_inverted_index.Here | 109 |
| abstract_inverted_index.NCC, | 328 |
| abstract_inverted_index.This | 140 |
| abstract_inverted_index.data | 39, 102, 144, 237, 272, 282, 292 |
| abstract_inverted_index.deep | 212 |
| abstract_inverted_index.edge | 129, 218 |
| abstract_inverted_index.fine | 13 |
| abstract_inverted_index.have | 299, 311 |
| abstract_inverted_index.high | 313 |
| abstract_inverted_index.into | 137 |
| abstract_inverted_index.min. | 178 |
| abstract_inverted_index.most | 4 |
| abstract_inverted_index.only | 71 |
| abstract_inverted_index.size | 184 |
| abstract_inverted_index.span | 20 |
| abstract_inverted_index.such | 329 |
| abstract_inverted_index.taxa | 197, 207 |
| abstract_inverted_index.that | 8, 40, 297 |
| abstract_inverted_index.thin | 338 |
| abstract_inverted_index.this | 31 |
| abstract_inverted_index.used | 111, 220 |
| abstract_inverted_index.view | 78 |
| abstract_inverted_index.with | 127, 143 |
| abstract_inverted_index.(DPI) | 163 |
| abstract_inverted_index.(HPC) | 56 |
| abstract_inverted_index.(NCC) | 124 |
| abstract_inverted_index.algal | 336 |
| abstract_inverted_index.bloom | 337 |
| abstract_inverted_index.image | 46, 62 |
| abstract_inverted_index.large | 21, 36 |
| abstract_inverted_index.local | 349 |
| abstract_inverted_index.makes | 150 |
| abstract_inverted_index.mins, | 260 |
| abstract_inverted_index.newly | 270 |
| abstract_inverted_index.occur | 11 |
| abstract_inverted_index.often | 19 |
| abstract_inverted_index.range | 185 |
| abstract_inverted_index.rapid | 61 |
| abstract_inverted_index.rarer | 206 |
| abstract_inverted_index.sizes | 2 |
| abstract_inverted_index.small | 1 |
| abstract_inverted_index.takes | 256 |
| abstract_inverted_index.these | 65 |
| abstract_inverted_index.video | 176 |
| abstract_inverted_index.where | 288 |
| abstract_inverted_index.which | 340 |
| abstract_inverted_index.(e.g., | 198, 203, 208 |
| abstract_inverted_index.23,000 | 242 |
| abstract_inverted_index.Imaged | 179 |
| abstract_inverted_index.Imager | 162 |
| abstract_inverted_index.affect | 341 |
| abstract_inverted_index.areas. | 23 |
| abstract_inverted_index.effect | 302 |
| abstract_inverted_index.enable | 294 |
| abstract_inverted_index.faster | 201 |
| abstract_inverted_index.health | 343 |
| abstract_inverted_index.highly | 97 |
| abstract_inverted_index.imaged | 133 |
| abstract_inverted_index.impact | 314 |
| abstract_inverted_index.larval | 209 |
| abstract_inverted_index.linked | 275 |
| abstract_inverted_index.marine | 5 |
| abstract_inverted_index.nature | 89 |
| abstract_inverted_index.oxygen | 331 |
| abstract_inverted_index.sample | 165 |
| abstract_inverted_index.server | 130, 219 |
| abstract_inverted_index.videos | 232 |
| abstract_inverted_index.zones, | 333 |
| abstract_inverted_index.225,000 | 244 |
| abstract_inverted_index.Current | 123 |
| abstract_inverted_index.Imaging | 116 |
| abstract_inverted_index.In-situ | 114 |
| abstract_inverted_index.Machine | 48 |
| abstract_inverted_index.ability | 317 |
| abstract_inverted_index.assets, | 66 |
| abstract_inverted_index.average | 258 |
| abstract_inverted_index.between | 241 |
| abstract_inverted_index.cameras | 164 |
| abstract_inverted_index.contain | 233, 240 |
| abstract_inverted_index.current | 99 |
| abstract_inverted_index.dynamic | 98 |
| abstract_inverted_index.fragile | 196 |
| abstract_inverted_index.harmful | 335 |
| abstract_inverted_index.heavyDB | 266 |
| abstract_inverted_index.imaging | 25 |
| abstract_inverted_index.include | 193 |
| abstract_inverted_index.krill), | 204 |
| abstract_inverted_index.layers, | 339 |
| abstract_inverted_index.leading | 74, 171 |
| abstract_inverted_index.minimum | 332 |
| abstract_inverted_index.process | 228 |
| abstract_inverted_index.provide | 27 |
| abstract_inverted_index.require | 41 |
| abstract_inverted_index.resolve | 319 |
| abstract_inverted_index.salps), | 200 |
| abstract_inverted_index.scales, | 15 |
| abstract_inverted_index.several | 286 |
| abstract_inverted_index.spatial | 14, 22 |
| abstract_inverted_index.species | 94 |
| abstract_inverted_index.through | 252 |
| abstract_inverted_index.Northern | 121 |
| abstract_inverted_index.Particle | 161 |
| abstract_inverted_index.System-3 | 117 |
| abstract_inverted_index.abundant | 194 |
| abstract_inverted_index.adaptive | 106, 151, 295, 308 |
| abstract_inverted_index.approach | 44 |
| abstract_inverted_index.classes. | 139 |
| abstract_inverted_index.classify | 132 |
| abstract_inverted_index.collects | 35 |
| abstract_inverted_index.critical | 59 |
| abstract_inverted_index.database | 267 |
| abstract_inverted_index.deployed | 215 |
| abstract_inverted_index.describe | 285 |
| abstract_inverted_index.envision | 306 |
| abstract_inverted_index.examples | 287 |
| abstract_inverted_index.features | 92, 325 |
| abstract_inverted_index.fishes). | 210 |
| abstract_inverted_index.heavy.ai | 148, 278 |
| abstract_inverted_index.however, | 64 |
| abstract_inverted_index.imagery. | 230 |
| abstract_inverted_index.imaging, | 289 |
| abstract_inverted_index.learning | 49, 213 |
| abstract_inverted_index.monitors | 268 |
| abstract_inverted_index.particle | 245 |
| abstract_inverted_index.pipeline | 214 |
| abstract_inverted_index.plankton | 6, 9, 51, 80, 134, 247 |
| abstract_inverted_index.sampling | 10, 32, 155, 296, 309 |
| abstract_inverted_index.solution | 29 |
| abstract_inverted_index.swimmers | 202 |
| abstract_inverted_index.systems, | 100 |
| abstract_inverted_index.together | 142 |
| abstract_inverted_index.(ISIIS-3) | 118 |
| abstract_inverted_index.CPU-based | 222 |
| abstract_inverted_index.GPU-based | 225 |
| abstract_inverted_index.analysis. | 47 |
| abstract_inverted_index.automated | 43 |
| abstract_inverted_index.available | 72 |
| abstract_inverted_index.community | 81 |
| abstract_inverted_index.computing | 55 |
| abstract_inverted_index.conundrum | 33 |
| abstract_inverted_index.dashboard | 149, 279 |
| abstract_inverted_index.depending | 261 |
| abstract_inverted_index.important | 323 |
| abstract_inverted_index.organisms | 180 |
| abstract_inverted_index.possible. | 158 |
| abstract_inverted_index.processed | 271 |
| abstract_inverted_index.questions | 18 |
| abstract_inverted_index.real-time | 101, 136, 152 |
| abstract_inverted_index.responses | 321 |
| abstract_inverted_index.sampling. | 108 |
| abstract_inverted_index.segments. | 248 |
| abstract_inverted_index.>10 | 173 |
| abstract_inverted_index.AI-enabled | 307 |
| abstract_inverted_index.California | 122 |
| abstract_inverted_index.Processing | 249 |
| abstract_inverted_index.Underwater | 24 |
| abstract_inverted_index.biological | 263, 320 |
| abstract_inverted_index.capability | 141 |
| abstract_inverted_index.ecosystem, | 346 |
| abstract_inverted_index.especially | 67 |
| abstract_inverted_index.fisheries, | 347 |
| abstract_inverted_index.quantities | 37 |
| abstract_inverted_index.responsive | 85 |
| abstract_inverted_index.structure. | 82 |
| abstract_inverted_index.assemblages | 95 |
| abstract_inverted_index.conjunction | 126 |
| abstract_inverted_index.interactive | 281 |
| abstract_inverted_index.necessitate | 7 |
| abstract_inverted_index.post-cruise | 73 |
| abstract_inverted_index.processing; | 63 |
| abstract_inverted_index.communities. | 350 |
| abstract_inverted_index.crustaceans, | 195 |
| abstract_inverted_index.segmentation | 223, 253 |
| abstract_inverted_index.hydromedusae, | 199 |
| abstract_inverted_index.multithreaded | 221 |
| abstract_inverted_index.oceanographic | 91, 107, 324 |
| abstract_inverted_index.oceanography. | 304 |
| abstract_inverted_index.productivity. | 264 |
| abstract_inverted_index.visualization | 145, 293 |
| abstract_inverted_index.classification | 226, 255 |
| abstract_inverted_index.transformative | 301 |
| abstract_inverted_index.visualization. | 283 |
| abstract_inverted_index.Ichthyoplankton | 115 |
| abstract_inverted_index.classification, | 52 |
| abstract_inverted_index.decision-making | 153 |
| abstract_inverted_index.infrastructure, | 57, 69 |
| abstract_inverted_index.often-ephemeral | 88 |
| abstract_inverted_index.ISIIS-Deep-focus | 160 |
| abstract_inverted_index.high-performance | 54 |
| abstract_inverted_index.‘after-the-fact’ | 77 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5021934484 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I131249849 |
| citation_normalized_percentile.value | 0.91320628 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |