Edge detection algorithm of medical image based on Canny operator Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1088/1742-6596/1955/1/012080
Edge detection is an important part of image segmentation, in this paper, the edge detection algorithm based on traditional Canny operator for medical images is studied. The Canny operator is improved using Otsu algorithm and double-gate limit detection method, and the ability of Canny operator edge detection is strengthened. The simulation of the algorithm is realized on the computer platform by MATLAB, and the experimental results are analyzed from two image objective evaluation indexes of information entropy and mean square error. The experimental results show that compared with the traditional Canny algorithm, the improved adaptive double threshold Canny algorithm has better edge detection effect, richer image details, better noise suppression and less false edges.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1088/1742-6596/1955/1/012080
- https://iopscience.iop.org/article/10.1088/1742-6596/1955/1/012080/pdf
- OA Status
- diamond
- Cited By
- 42
- References
- 8
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3173495676
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3173495676Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1088/1742-6596/1955/1/012080Digital Object Identifier
- Title
-
Edge detection algorithm of medical image based on Canny operatorWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-06-01Full publication date if available
- Authors
-
Ziqi Xu, Xiaoqiang Ji, Meijiao Wang, Xiaobing SunList of authors in order
- Landing page
-
https://doi.org/10.1088/1742-6596/1955/1/012080Publisher landing page
- PDF URL
-
https://iopscience.iop.org/article/10.1088/1742-6596/1955/1/012080/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://iopscience.iop.org/article/10.1088/1742-6596/1955/1/012080/pdfDirect OA link when available
- Concepts
-
Canny edge detector, Deriche edge detector, Image gradient, Edge detection, Otsu's method, Artificial intelligence, Algorithm, Image segmentation, Computer vision, Computer science, Operator (biology), Image (mathematics), Pattern recognition (psychology), Mathematics, Image processing, Gene, Biochemistry, Chemistry, Transcription factor, RepressorTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
42Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 7, 2024: 21, 2023: 9, 2022: 5Per-year citation counts (last 5 years)
- References (count)
-
8Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3173495676 |
|---|---|
| doi | https://doi.org/10.1088/1742-6596/1955/1/012080 |
| ids.doi | https://doi.org/10.1088/1742-6596/1955/1/012080 |
| ids.mag | 3173495676 |
| ids.openalex | https://openalex.org/W3173495676 |
| fwci | 3.57768176 |
| type | article |
| title | Edge detection algorithm of medical image based on Canny operator |
| biblio.issue | 1 |
| biblio.volume | 1955 |
| biblio.last_page | 012080 |
| biblio.first_page | 012080 |
| topics[0].id | https://openalex.org/T12549 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9829999804496765 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Image and Object Detection Techniques |
| topics[1].id | https://openalex.org/T10052 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9779999852180481 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Medical Image Segmentation Techniques |
| topics[2].id | https://openalex.org/T12111 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9520999789237976 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2209 |
| topics[2].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[2].display_name | Industrial Vision Systems and Defect Detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C14705441 |
| concepts[0].level | 5 |
| concepts[0].score | 0.939541220664978 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q597183 |
| concepts[0].display_name | Canny edge detector |
| concepts[1].id | https://openalex.org/C167074055 |
| concepts[1].level | 5 |
| concepts[1].score | 0.9252521991729736 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5262565 |
| concepts[1].display_name | Deriche edge detector |
| concepts[2].id | https://openalex.org/C182037307 |
| concepts[2].level | 5 |
| concepts[2].score | 0.7702746391296387 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17039097 |
| concepts[2].display_name | Image gradient |
| concepts[3].id | https://openalex.org/C193536780 |
| concepts[3].level | 4 |
| concepts[3].score | 0.6949225068092346 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1513153 |
| concepts[3].display_name | Edge detection |
| concepts[4].id | https://openalex.org/C21729346 |
| concepts[4].level | 4 |
| concepts[4].score | 0.5513913631439209 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2444417 |
| concepts[4].display_name | Otsu's method |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5296050310134888 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C11413529 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5269796848297119 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[6].display_name | Algorithm |
| concepts[7].id | https://openalex.org/C124504099 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5003259181976318 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[7].display_name | Image segmentation |
| concepts[8].id | https://openalex.org/C31972630 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4894076883792877 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[8].display_name | Computer vision |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.4749358296394348 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| concepts[10].id | https://openalex.org/C17020691 |
| concepts[10].level | 5 |
| concepts[10].score | 0.4499196410179138 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q139677 |
| concepts[10].display_name | Operator (biology) |
| concepts[11].id | https://openalex.org/C115961682 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4367867410182953 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[11].display_name | Image (mathematics) |
| concepts[12].id | https://openalex.org/C153180895 |
| concepts[12].level | 2 |
| concepts[12].score | 0.40603557229042053 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[12].display_name | Pattern recognition (psychology) |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.4006669223308563 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C9417928 |
| concepts[14].level | 3 |
| concepts[14].score | 0.2810549736022949 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1070689 |
| concepts[14].display_name | Image processing |
| concepts[15].id | https://openalex.org/C104317684 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[15].display_name | Gene |
| concepts[16].id | https://openalex.org/C55493867 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[16].display_name | Biochemistry |
| concepts[17].id | https://openalex.org/C185592680 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[17].display_name | Chemistry |
| concepts[18].id | https://openalex.org/C86339819 |
| concepts[18].level | 3 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q407384 |
| concepts[18].display_name | Transcription factor |
| concepts[19].id | https://openalex.org/C158448853 |
| concepts[19].level | 4 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q425218 |
| concepts[19].display_name | Repressor |
| keywords[0].id | https://openalex.org/keywords/canny-edge-detector |
| keywords[0].score | 0.939541220664978 |
| keywords[0].display_name | Canny edge detector |
| keywords[1].id | https://openalex.org/keywords/deriche-edge-detector |
| keywords[1].score | 0.9252521991729736 |
| keywords[1].display_name | Deriche edge detector |
| keywords[2].id | https://openalex.org/keywords/image-gradient |
| keywords[2].score | 0.7702746391296387 |
| keywords[2].display_name | Image gradient |
| keywords[3].id | https://openalex.org/keywords/edge-detection |
| keywords[3].score | 0.6949225068092346 |
| keywords[3].display_name | Edge detection |
| keywords[4].id | https://openalex.org/keywords/otsus-method |
| keywords[4].score | 0.5513913631439209 |
| keywords[4].display_name | Otsu's method |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5296050310134888 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/algorithm |
| keywords[6].score | 0.5269796848297119 |
| keywords[6].display_name | Algorithm |
| keywords[7].id | https://openalex.org/keywords/image-segmentation |
| keywords[7].score | 0.5003259181976318 |
| keywords[7].display_name | Image segmentation |
| keywords[8].id | https://openalex.org/keywords/computer-vision |
| keywords[8].score | 0.4894076883792877 |
| keywords[8].display_name | Computer vision |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.4749358296394348 |
| keywords[9].display_name | Computer science |
| keywords[10].id | https://openalex.org/keywords/operator |
| keywords[10].score | 0.4499196410179138 |
| keywords[10].display_name | Operator (biology) |
| keywords[11].id | https://openalex.org/keywords/image |
| keywords[11].score | 0.4367867410182953 |
| keywords[11].display_name | Image (mathematics) |
| keywords[12].id | https://openalex.org/keywords/pattern-recognition |
| keywords[12].score | 0.40603557229042053 |
| keywords[12].display_name | Pattern recognition (psychology) |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.4006669223308563 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/image-processing |
| keywords[14].score | 0.2810549736022949 |
| keywords[14].display_name | Image processing |
| language | en |
| locations[0].id | doi:10.1088/1742-6596/1955/1/012080 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210187594 |
| locations[0].source.issn | 1742-6588, 1742-6596 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1742-6588 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Physics Conference Series |
| locations[0].source.host_organization | https://openalex.org/P4310320083 |
| locations[0].source.host_organization_name | IOP Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| locations[0].source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://iopscience.iop.org/article/10.1088/1742-6596/1955/1/012080/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Physics: Conference Series |
| locations[0].landing_page_url | https://doi.org/10.1088/1742-6596/1955/1/012080 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100743349 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1748-5801 |
| authorships[0].author.display_name | Ziqi Xu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210143016 |
| authorships[0].affiliations[0].raw_affiliation_string | Changchun College of Electronic Technology, Changchun, Jilin, 130114, China. |
| authorships[0].institutions[0].id | https://openalex.org/I4210143016 |
| authorships[0].institutions[0].ror | https://ror.org/03r6wam78 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210143016 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Changchun Institute of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ziqi Xu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Changchun College of Electronic Technology, Changchun, Jilin, 130114, China. |
| authorships[1].author.id | https://openalex.org/A5037821700 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8556-3579 |
| authorships[1].author.display_name | Xiaoqiang Ji |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210143016 |
| authorships[1].affiliations[0].raw_affiliation_string | Changchun College of Electronic Technology, Changchun, Jilin, 130114, China. |
| authorships[1].institutions[0].id | https://openalex.org/I4210143016 |
| authorships[1].institutions[0].ror | https://ror.org/03r6wam78 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210143016 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Changchun Institute of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xiaoqiang Ji |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Changchun College of Electronic Technology, Changchun, Jilin, 130114, China. |
| authorships[2].author.id | https://openalex.org/A5029448164 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Meijiao Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210143016 |
| authorships[2].affiliations[0].raw_affiliation_string | Changchun College of Electronic Technology, Changchun, Jilin, 130114, China. |
| authorships[2].institutions[0].id | https://openalex.org/I4210143016 |
| authorships[2].institutions[0].ror | https://ror.org/03r6wam78 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210143016 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Changchun Institute of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Meijiao Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Changchun College of Electronic Technology, Changchun, Jilin, 130114, China. |
| authorships[3].author.id | https://openalex.org/A5006966486 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5165-5080 |
| authorships[3].author.display_name | Xiaobing Sun |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210143016 |
| authorships[3].affiliations[0].raw_affiliation_string | Changchun College of Electronic Technology, Changchun, Jilin, 130114, China. |
| authorships[3].institutions[0].id | https://openalex.org/I4210143016 |
| authorships[3].institutions[0].ror | https://ror.org/03r6wam78 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210143016 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Changchun Institute of Technology |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Xiaobing Sun |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Changchun College of Electronic Technology, Changchun, Jilin, 130114, China. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://iopscience.iop.org/article/10.1088/1742-6596/1955/1/012080/pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Edge detection algorithm of medical image based on Canny operator |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12549 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9829999804496765 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Image and Object Detection Techniques |
| related_works | https://openalex.org/W2545065926, https://openalex.org/W3093839383, https://openalex.org/W2056066761, https://openalex.org/W2387510934, https://openalex.org/W2015446345, https://openalex.org/W3169126738, https://openalex.org/W2130933797, https://openalex.org/W2185255929, https://openalex.org/W1967001075, https://openalex.org/W2277299109 |
| cited_by_count | 42 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 7 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 21 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 9 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 5 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1088/1742-6596/1955/1/012080 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210187594 |
| best_oa_location.source.issn | 1742-6588, 1742-6596 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1742-6588 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Physics Conference Series |
| best_oa_location.source.host_organization | https://openalex.org/P4310320083 |
| best_oa_location.source.host_organization_name | IOP Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| best_oa_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://iopscience.iop.org/article/10.1088/1742-6596/1955/1/012080/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Physics: Conference Series |
| best_oa_location.landing_page_url | https://doi.org/10.1088/1742-6596/1955/1/012080 |
| primary_location.id | doi:10.1088/1742-6596/1955/1/012080 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210187594 |
| primary_location.source.issn | 1742-6588, 1742-6596 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1742-6588 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Physics Conference Series |
| primary_location.source.host_organization | https://openalex.org/P4310320083 |
| primary_location.source.host_organization_name | IOP Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| primary_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://iopscience.iop.org/article/10.1088/1742-6596/1955/1/012080/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Physics: Conference Series |
| primary_location.landing_page_url | https://doi.org/10.1088/1742-6596/1955/1/012080 |
| publication_date | 2021-06-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2921114310, https://openalex.org/W2947922483, https://openalex.org/W2792505645, https://openalex.org/W1976528366, https://openalex.org/W3018293717, https://openalex.org/W2979476407, https://openalex.org/W2900846748, https://openalex.org/W2538900907 |
| referenced_works_count | 8 |
| abstract_inverted_index.an | 4 |
| abstract_inverted_index.by | 61 |
| abstract_inverted_index.in | 10 |
| abstract_inverted_index.is | 3, 25, 30, 48, 55 |
| abstract_inverted_index.of | 7, 43, 52, 75 |
| abstract_inverted_index.on | 18, 57 |
| abstract_inverted_index.The | 27, 50, 82 |
| abstract_inverted_index.and | 35, 40, 63, 78, 111 |
| abstract_inverted_index.are | 67 |
| abstract_inverted_index.for | 22 |
| abstract_inverted_index.has | 100 |
| abstract_inverted_index.the | 13, 41, 53, 58, 64, 89, 93 |
| abstract_inverted_index.two | 70 |
| abstract_inverted_index.Edge | 1 |
| abstract_inverted_index.Otsu | 33 |
| abstract_inverted_index.edge | 14, 46, 102 |
| abstract_inverted_index.from | 69 |
| abstract_inverted_index.less | 112 |
| abstract_inverted_index.mean | 79 |
| abstract_inverted_index.part | 6 |
| abstract_inverted_index.show | 85 |
| abstract_inverted_index.that | 86 |
| abstract_inverted_index.this | 11 |
| abstract_inverted_index.with | 88 |
| abstract_inverted_index.Canny | 20, 28, 44, 91, 98 |
| abstract_inverted_index.based | 17 |
| abstract_inverted_index.false | 113 |
| abstract_inverted_index.image | 8, 71, 106 |
| abstract_inverted_index.limit | 37 |
| abstract_inverted_index.noise | 109 |
| abstract_inverted_index.using | 32 |
| abstract_inverted_index.better | 101, 108 |
| abstract_inverted_index.double | 96 |
| abstract_inverted_index.edges. | 114 |
| abstract_inverted_index.error. | 81 |
| abstract_inverted_index.images | 24 |
| abstract_inverted_index.paper, | 12 |
| abstract_inverted_index.richer | 105 |
| abstract_inverted_index.square | 80 |
| abstract_inverted_index.MATLAB, | 62 |
| abstract_inverted_index.ability | 42 |
| abstract_inverted_index.effect, | 104 |
| abstract_inverted_index.entropy | 77 |
| abstract_inverted_index.indexes | 74 |
| abstract_inverted_index.medical | 23 |
| abstract_inverted_index.method, | 39 |
| abstract_inverted_index.results | 66, 84 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.adaptive | 95 |
| abstract_inverted_index.analyzed | 68 |
| abstract_inverted_index.compared | 87 |
| abstract_inverted_index.computer | 59 |
| abstract_inverted_index.details, | 107 |
| abstract_inverted_index.improved | 31, 94 |
| abstract_inverted_index.operator | 21, 29, 45 |
| abstract_inverted_index.platform | 60 |
| abstract_inverted_index.realized | 56 |
| abstract_inverted_index.studied. | 26 |
| abstract_inverted_index.algorithm | 16, 34, 54, 99 |
| abstract_inverted_index.detection | 2, 15, 38, 47, 103 |
| abstract_inverted_index.important | 5 |
| abstract_inverted_index.objective | 72 |
| abstract_inverted_index.threshold | 97 |
| abstract_inverted_index.algorithm, | 92 |
| abstract_inverted_index.evaluation | 73 |
| abstract_inverted_index.simulation | 51 |
| abstract_inverted_index.double-gate | 36 |
| abstract_inverted_index.information | 76 |
| abstract_inverted_index.suppression | 110 |
| abstract_inverted_index.traditional | 19, 90 |
| abstract_inverted_index.experimental | 65, 83 |
| abstract_inverted_index.segmentation, | 9 |
| abstract_inverted_index.strengthened. | 49 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5037821700 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I4210143016 |
| citation_normalized_percentile.value | 0.94061148 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |