Editorial: Special Issue on Unobtrusive Physiological Measurement Methods for Affective Applications Article Swipe
Ioannis Pavlidis
,
Theodora Chaspari
,
Daniel McDuff
·
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1109/taffc.2023.3286769
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1109/taffc.2023.3286769
In The formative years of Affective Computing [1], from the late 1990s and into the early 2000s, a significant fraction of research attention was focused on the development of methods for unobtrusive physiological measurement . It quickly became obvious that wiring people with electrodes and strapping cumbersome hardware to their bodies was not only restricting the types of experiments that could be performed but also was not conducive to unbiased observations. For instance, subjects with fingers wrapped with electrodermal activity (EDA) and photoplethysmography (PPG) sensors could hardly type, drive or sleep comfortably. Hence, there was a need for more elegant and scalable physiological measurement methods [2].
Related Topics
Concepts
Metadata
- Type
- editorial
- Language
- en
- Landing Page
- https://doi.org/10.1109/taffc.2023.3286769
- https://ieeexplore.ieee.org/ielx7/5165369/10330166/10330547.pdf
- OA Status
- bronze
- References
- 22
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4389102690
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4389102690Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/taffc.2023.3286769Digital Object Identifier
- Title
-
Editorial: Special Issue on Unobtrusive Physiological Measurement Methods for Affective ApplicationsWork title
- Type
-
editorialOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-01Full publication date if available
- Authors
-
Ioannis Pavlidis, Theodora Chaspari, Daniel McDuffList of authors in order
- Landing page
-
https://doi.org/10.1109/taffc.2023.3286769Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/5165369/10330166/10330547.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/5165369/10330166/10330547.pdfDirect OA link when available
- Concepts
-
Photoplethysmogram, Strapping, Computer science, Scalability, Formative assessment, Psychology, Human–computer interaction, Artificial intelligence, Computer vision, Engineering, Mathematics education, Mechanical engineering, Database, Filter (signal processing)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
22Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4389102690 |
|---|---|
| doi | https://doi.org/10.1109/taffc.2023.3286769 |
| ids.doi | https://doi.org/10.1109/taffc.2023.3286769 |
| ids.openalex | https://openalex.org/W4389102690 |
| fwci | 0.0 |
| type | editorial |
| title | Editorial: Special Issue on Unobtrusive Physiological Measurement Methods for Affective Applications |
| biblio.issue | 4 |
| biblio.volume | 14 |
| biblio.last_page | 2566 |
| biblio.first_page | 2564 |
| topics[0].id | https://openalex.org/T11196 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Non-Invasive Vital Sign Monitoring |
| topics[1].id | https://openalex.org/T10429 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9970999956130981 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2805 |
| topics[1].subfield.display_name | Cognitive Neuroscience |
| topics[1].display_name | EEG and Brain-Computer Interfaces |
| topics[2].id | https://openalex.org/T11021 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9926000237464905 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2705 |
| topics[2].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[2].display_name | ECG Monitoring and Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C116390426 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7628891468048096 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7187885 |
| concepts[0].display_name | Photoplethysmogram |
| concepts[1].id | https://openalex.org/C2779025673 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7360264658927917 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1569204 |
| concepts[1].display_name | Strapping |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5107946395874023 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C48044578 |
| concepts[3].level | 2 |
| concepts[3].score | 0.510744571685791 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[3].display_name | Scalability |
| concepts[4].id | https://openalex.org/C42525527 |
| concepts[4].level | 2 |
| concepts[4].score | 0.47513750195503235 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1209955 |
| concepts[4].display_name | Formative assessment |
| concepts[5].id | https://openalex.org/C15744967 |
| concepts[5].level | 0 |
| concepts[5].score | 0.43609946966171265 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[5].display_name | Psychology |
| concepts[6].id | https://openalex.org/C107457646 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4172123670578003 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[6].display_name | Human–computer interaction |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.39881885051727295 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C31972630 |
| concepts[8].level | 1 |
| concepts[8].score | 0.22108912467956543 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[8].display_name | Computer vision |
| concepts[9].id | https://openalex.org/C127413603 |
| concepts[9].level | 0 |
| concepts[9].score | 0.20021694898605347 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[9].display_name | Engineering |
| concepts[10].id | https://openalex.org/C145420912 |
| concepts[10].level | 1 |
| concepts[10].score | 0.07872939109802246 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q853077 |
| concepts[10].display_name | Mathematics education |
| concepts[11].id | https://openalex.org/C78519656 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[11].display_name | Mechanical engineering |
| concepts[12].id | https://openalex.org/C77088390 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[12].display_name | Database |
| concepts[13].id | https://openalex.org/C106131492 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[13].display_name | Filter (signal processing) |
| keywords[0].id | https://openalex.org/keywords/photoplethysmogram |
| keywords[0].score | 0.7628891468048096 |
| keywords[0].display_name | Photoplethysmogram |
| keywords[1].id | https://openalex.org/keywords/strapping |
| keywords[1].score | 0.7360264658927917 |
| keywords[1].display_name | Strapping |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5107946395874023 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/scalability |
| keywords[3].score | 0.510744571685791 |
| keywords[3].display_name | Scalability |
| keywords[4].id | https://openalex.org/keywords/formative-assessment |
| keywords[4].score | 0.47513750195503235 |
| keywords[4].display_name | Formative assessment |
| keywords[5].id | https://openalex.org/keywords/psychology |
| keywords[5].score | 0.43609946966171265 |
| keywords[5].display_name | Psychology |
| keywords[6].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[6].score | 0.4172123670578003 |
| keywords[6].display_name | Human–computer interaction |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.39881885051727295 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/computer-vision |
| keywords[8].score | 0.22108912467956543 |
| keywords[8].display_name | Computer vision |
| keywords[9].id | https://openalex.org/keywords/engineering |
| keywords[9].score | 0.20021694898605347 |
| keywords[9].display_name | Engineering |
| keywords[10].id | https://openalex.org/keywords/mathematics-education |
| keywords[10].score | 0.07872939109802246 |
| keywords[10].display_name | Mathematics education |
| language | en |
| locations[0].id | doi:10.1109/taffc.2023.3286769 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S104780363 |
| locations[0].source.issn | 1949-3045, 2371-9850 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1949-3045 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEEE Transactions on Affective Computing |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/5165369/10330166/10330547.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Transactions on Affective Computing |
| locations[0].landing_page_url | https://doi.org/10.1109/taffc.2023.3286769 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5089194304 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8025-2600 |
| authorships[0].author.display_name | Ioannis Pavlidis |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I44461941 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science, University of Houston, Houston, TX, USA |
| authorships[0].institutions[0].id | https://openalex.org/I44461941 |
| authorships[0].institutions[0].ror | https://ror.org/048sx0r50 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I44461941 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Houston |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ioannis T. Pavlidis |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science, University of Houston, Houston, TX, USA |
| authorships[1].author.id | https://openalex.org/A5029799530 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7603-8633 |
| authorships[1].author.display_name | Theodora Chaspari |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I91045830 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Texas A&M University, College Station, TX, USA |
| authorships[1].institutions[0].id | https://openalex.org/I91045830 |
| authorships[1].institutions[0].ror | https://ror.org/01f5ytq51 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I91045830 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Texas A&M University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Theodora Chaspari |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science and Engineering, Texas A&M University, College Station, TX, USA |
| authorships[2].author.id | https://openalex.org/A5100681741 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7313-0082 |
| authorships[2].author.display_name | Daniel McDuff |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I201448701 |
| authorships[2].affiliations[0].raw_affiliation_string | University of Washington, Seattle, WA, USA |
| authorships[2].institutions[0].id | https://openalex.org/I201448701 |
| authorships[2].institutions[0].ror | https://ror.org/00cvxb145 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I201448701 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Washington |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Daniel McDuff |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of Washington, Seattle, WA, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/5165369/10330166/10330547.pdf |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Editorial: Special Issue on Unobtrusive Physiological Measurement Methods for Affective Applications |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11196 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Non-Invasive Vital Sign Monitoring |
| related_works | https://openalex.org/W2051050731, https://openalex.org/W2257251475, https://openalex.org/W2391090361, https://openalex.org/W1980523727, https://openalex.org/W4231149953, https://openalex.org/W2020065778, https://openalex.org/W164642963, https://openalex.org/W144639311, https://openalex.org/W4234637368, https://openalex.org/W1995294690 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1109/taffc.2023.3286769 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S104780363 |
| best_oa_location.source.issn | 1949-3045, 2371-9850 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1949-3045 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | IEEE Transactions on Affective Computing |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/5165369/10330166/10330547.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Transactions on Affective Computing |
| best_oa_location.landing_page_url | https://doi.org/10.1109/taffc.2023.3286769 |
| primary_location.id | doi:10.1109/taffc.2023.3286769 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S104780363 |
| primary_location.source.issn | 1949-3045, 2371-9850 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1949-3045 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEEE Transactions on Affective Computing |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/5165369/10330166/10330547.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Transactions on Affective Computing |
| primary_location.landing_page_url | https://doi.org/10.1109/taffc.2023.3286769 |
| publication_date | 2023-10-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4230277160, https://openalex.org/W1559669460, https://openalex.org/W2135220085, https://openalex.org/W2130583484, https://openalex.org/W2167600723, https://openalex.org/W1984554603, https://openalex.org/W2008821584, https://openalex.org/W2023513210, https://openalex.org/W2902449706, https://openalex.org/W4309672190, https://openalex.org/W4312992086, https://openalex.org/W4380520337, https://openalex.org/W4362683582, https://openalex.org/W4379382378, https://openalex.org/W4224247713, https://openalex.org/W6691669583, https://openalex.org/W3116718057, https://openalex.org/W3213949538, https://openalex.org/W4362714408, https://openalex.org/W2731964405, https://openalex.org/W3021080764, https://openalex.org/W3103291722 |
| referenced_works_count | 22 |
| abstract_inverted_index.. | 36 |
| abstract_inverted_index.a | 17, 97 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.It | 37 |
| abstract_inverted_index.be | 63 |
| abstract_inverted_index.of | 4, 20, 28, 59 |
| abstract_inverted_index.on | 25 |
| abstract_inverted_index.or | 91 |
| abstract_inverted_index.to | 50, 70 |
| abstract_inverted_index.For | 73 |
| abstract_inverted_index.The | 1 |
| abstract_inverted_index.and | 12, 46, 83, 102 |
| abstract_inverted_index.but | 65 |
| abstract_inverted_index.for | 30, 99 |
| abstract_inverted_index.not | 54, 68 |
| abstract_inverted_index.the | 9, 14, 26, 57 |
| abstract_inverted_index.was | 23, 53, 67, 96 |
| abstract_inverted_index.[1], | 7 |
| abstract_inverted_index.[2]. | 107 |
| abstract_inverted_index.also | 66 |
| abstract_inverted_index.from | 8 |
| abstract_inverted_index.into | 13 |
| abstract_inverted_index.late | 10 |
| abstract_inverted_index.more | 100 |
| abstract_inverted_index.need | 98 |
| abstract_inverted_index.only | 55 |
| abstract_inverted_index.that | 41, 61 |
| abstract_inverted_index.with | 44, 76, 79 |
| abstract_inverted_index.(EDA) | 82 |
| abstract_inverted_index.(PPG) | 85 |
| abstract_inverted_index.1990s | 11 |
| abstract_inverted_index.could | 62, 87 |
| abstract_inverted_index.drive | 90 |
| abstract_inverted_index.early | 15 |
| abstract_inverted_index.sleep | 92 |
| abstract_inverted_index.their | 51 |
| abstract_inverted_index.there | 95 |
| abstract_inverted_index.type, | 89 |
| abstract_inverted_index.types | 58 |
| abstract_inverted_index.years | 3 |
| abstract_inverted_index.2000s, | 16 |
| abstract_inverted_index.Hence, | 94 |
| abstract_inverted_index.became | 39 |
| abstract_inverted_index.bodies | 52 |
| abstract_inverted_index.hardly | 88 |
| abstract_inverted_index.people | 43 |
| abstract_inverted_index.wiring | 42 |
| abstract_inverted_index.<italic | 31 |
| abstract_inverted_index.elegant | 101 |
| abstract_inverted_index.fingers | 77 |
| abstract_inverted_index.focused | 24 |
| abstract_inverted_index.methods | 29, 106 |
| abstract_inverted_index.obvious | 40 |
| abstract_inverted_index.quickly | 38 |
| abstract_inverted_index.sensors | 86 |
| abstract_inverted_index.wrapped | 78 |
| abstract_inverted_index.activity | 81 |
| abstract_inverted_index.fraction | 19 |
| abstract_inverted_index.hardware | 49 |
| abstract_inverted_index.research | 21 |
| abstract_inverted_index.scalable | 103 |
| abstract_inverted_index.subjects | 75 |
| abstract_inverted_index.unbiased | 71 |
| abstract_inverted_index.Affective | 5 |
| abstract_inverted_index.Computing | 6 |
| abstract_inverted_index.attention | 22 |
| abstract_inverted_index.conducive | 69 |
| abstract_inverted_index.formative | 2 |
| abstract_inverted_index.instance, | 74 |
| abstract_inverted_index.performed | 64 |
| abstract_inverted_index.strapping | 47 |
| abstract_inverted_index.cumbersome | 48 |
| abstract_inverted_index.electrodes | 45 |
| abstract_inverted_index.development | 27 |
| abstract_inverted_index.experiments | 60 |
| abstract_inverted_index.measurement | 105 |
| abstract_inverted_index.restricting | 56 |
| abstract_inverted_index.significant | 18 |
| abstract_inverted_index.comfortably. | 93 |
| abstract_inverted_index.electrodermal | 80 |
| abstract_inverted_index.observations. | 72 |
| abstract_inverted_index.physiological | 34, 104 |
| abstract_inverted_index.measurement</i> | 35 |
| abstract_inverted_index.photoplethysmography | 84 |
| abstract_inverted_index.xmlns:mml="http://www.w3.org/1998/Math/MathML" | 32 |
| abstract_inverted_index.xmlns:xlink="http://www.w3.org/1999/xlink">unobtrusive | 33 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.4699999988079071 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.19005489 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |