EDSNet: Efficient-DSNet for Video Summarization Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2409.14724
Current video summarization methods largely rely on transformer-based architectures, which, due to their quadratic complexity, require substantial computational resources. In this work, we address these inefficiencies by enhancing the Direct-to-Summarize Network (DSNet) with more resource-efficient token mixing mechanisms. We show that replacing traditional attention with alternatives like Fourier, Wavelet transforms, and Nyströmformer improves efficiency and performance. Furthermore, we explore various pooling strategies within the Regional Proposal Network, including ROI pooling, Fast Fourier Transform pooling, and flat pooling. Our experimental results on TVSum and SumMe datasets demonstrate that these modifications significantly reduce computational costs while maintaining competitive summarization performance. Thus, our work offers a more scalable solution for video summarization tasks.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2409.14724
- https://arxiv.org/pdf/2409.14724
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403780263
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403780263Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2409.14724Digital Object Identifier
- Title
-
EDSNet: Efficient-DSNet for Video SummarizationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-23Full publication date if available
- Authors
-
A. K. S. K. Prasad, Pranav Jeevan, Amit SethiList of authors in order
- Landing page
-
https://arxiv.org/abs/2409.14724Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2409.14724Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2409.14724Direct OA link when available
- Concepts
-
Automatic summarization, Computer science, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403780263 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2409.14724 |
| ids.doi | https://doi.org/10.48550/arxiv.2409.14724 |
| ids.openalex | https://openalex.org/W4403780263 |
| fwci | |
| type | preprint |
| title | EDSNet: Efficient-DSNet for Video Summarization |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11439 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9890000224113464 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Video Analysis and Summarization |
| topics[1].id | https://openalex.org/T11309 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9735999703407288 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Music and Audio Processing |
| topics[2].id | https://openalex.org/T10775 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9524000287055969 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Generative Adversarial Networks and Image Synthesis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C170858558 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9182316064834595 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1394144 |
| concepts[0].display_name | Automatic summarization |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5580511093139648 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.2869676649570465 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/automatic-summarization |
| keywords[0].score | 0.9182316064834595 |
| keywords[0].display_name | Automatic summarization |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5580511093139648 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.2869676649570465 |
| keywords[2].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2409.14724 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2409.14724 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2409.14724 |
| locations[1].id | doi:10.48550/arxiv.2409.14724 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2409.14724 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5049874726 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6322-5624 |
| authorships[0].author.display_name | A. K. S. K. Prasad |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Prasad, Ashish |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5090066782 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Pranav Jeevan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jeevan, Pranav |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5087629613 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8634-1804 |
| authorships[2].author.display_name | Amit Sethi |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Sethi, Amit |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2409.14724 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | EDSNet: Efficient-DSNet for Video Summarization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11439 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9890000224113464 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Video Analysis and Summarization |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2366403280, https://openalex.org/W1495108544, https://openalex.org/W2091301346, https://openalex.org/W3148229873, https://openalex.org/W4389760904, https://openalex.org/W2150160875, https://openalex.org/W2351187795 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2409.14724 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2409.14724 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2409.14724 |
| primary_location.id | pmh:oai:arXiv.org:2409.14724 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2409.14724 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2409.14724 |
| publication_date | 2024-09-23 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 102 |
| abstract_inverted_index.In | 19 |
| abstract_inverted_index.We | 38 |
| abstract_inverted_index.by | 26 |
| abstract_inverted_index.on | 6, 80 |
| abstract_inverted_index.to | 11 |
| abstract_inverted_index.we | 22, 57 |
| abstract_inverted_index.Our | 77 |
| abstract_inverted_index.ROI | 68 |
| abstract_inverted_index.and | 50, 54, 74, 82 |
| abstract_inverted_index.due | 10 |
| abstract_inverted_index.for | 106 |
| abstract_inverted_index.our | 99 |
| abstract_inverted_index.the | 28, 63 |
| abstract_inverted_index.Fast | 70 |
| abstract_inverted_index.flat | 75 |
| abstract_inverted_index.like | 46 |
| abstract_inverted_index.more | 33, 103 |
| abstract_inverted_index.rely | 5 |
| abstract_inverted_index.show | 39 |
| abstract_inverted_index.that | 40, 86 |
| abstract_inverted_index.this | 20 |
| abstract_inverted_index.with | 32, 44 |
| abstract_inverted_index.work | 100 |
| abstract_inverted_index.SumMe | 83 |
| abstract_inverted_index.TVSum | 81 |
| abstract_inverted_index.Thus, | 98 |
| abstract_inverted_index.costs | 92 |
| abstract_inverted_index.their | 12 |
| abstract_inverted_index.these | 24, 87 |
| abstract_inverted_index.token | 35 |
| abstract_inverted_index.video | 1, 107 |
| abstract_inverted_index.while | 93 |
| abstract_inverted_index.work, | 21 |
| abstract_inverted_index.mixing | 36 |
| abstract_inverted_index.offers | 101 |
| abstract_inverted_index.reduce | 90 |
| abstract_inverted_index.tasks. | 109 |
| abstract_inverted_index.which, | 9 |
| abstract_inverted_index.within | 62 |
| abstract_inverted_index.(DSNet) | 31 |
| abstract_inverted_index.Current | 0 |
| abstract_inverted_index.Fourier | 71 |
| abstract_inverted_index.Network | 30 |
| abstract_inverted_index.Wavelet | 48 |
| abstract_inverted_index.address | 23 |
| abstract_inverted_index.explore | 58 |
| abstract_inverted_index.largely | 4 |
| abstract_inverted_index.methods | 3 |
| abstract_inverted_index.pooling | 60 |
| abstract_inverted_index.require | 15 |
| abstract_inverted_index.results | 79 |
| abstract_inverted_index.various | 59 |
| abstract_inverted_index.Fourier, | 47 |
| abstract_inverted_index.Network, | 66 |
| abstract_inverted_index.Proposal | 65 |
| abstract_inverted_index.Regional | 64 |
| abstract_inverted_index.datasets | 84 |
| abstract_inverted_index.improves | 52 |
| abstract_inverted_index.pooling, | 69, 73 |
| abstract_inverted_index.pooling. | 76 |
| abstract_inverted_index.scalable | 104 |
| abstract_inverted_index.solution | 105 |
| abstract_inverted_index.Transform | 72 |
| abstract_inverted_index.attention | 43 |
| abstract_inverted_index.enhancing | 27 |
| abstract_inverted_index.including | 67 |
| abstract_inverted_index.quadratic | 13 |
| abstract_inverted_index.replacing | 41 |
| abstract_inverted_index.efficiency | 53 |
| abstract_inverted_index.resources. | 18 |
| abstract_inverted_index.strategies | 61 |
| abstract_inverted_index.competitive | 95 |
| abstract_inverted_index.complexity, | 14 |
| abstract_inverted_index.demonstrate | 85 |
| abstract_inverted_index.maintaining | 94 |
| abstract_inverted_index.mechanisms. | 37 |
| abstract_inverted_index.substantial | 16 |
| abstract_inverted_index.traditional | 42 |
| abstract_inverted_index.transforms, | 49 |
| abstract_inverted_index.Furthermore, | 56 |
| abstract_inverted_index.alternatives | 45 |
| abstract_inverted_index.experimental | 78 |
| abstract_inverted_index.performance. | 55, 97 |
| abstract_inverted_index.computational | 17, 91 |
| abstract_inverted_index.modifications | 88 |
| abstract_inverted_index.significantly | 89 |
| abstract_inverted_index.summarization | 2, 96, 108 |
| abstract_inverted_index.Nyströmformer | 51 |
| abstract_inverted_index.architectures, | 8 |
| abstract_inverted_index.inefficiencies | 25 |
| abstract_inverted_index.transformer-based | 7 |
| abstract_inverted_index.resource-efficient | 34 |
| abstract_inverted_index.Direct-to-Summarize | 29 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |