EEG Based Emotion Recognition Using Long Short Term Memory Network with Improved Rat Swarm Optimization Algorithm Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.18280/ria.370205
The automatic human Emotion Recognition (ER) based on Electroencephalography (EEG) signal has gained more attention among the researcher communities with a rapid growth of Human Computer Interaction (HCI).Most of the prior models have not focused on the context-information of the EEG signals.In this research manuscript, a novel automated model is implemented for improving ER using EEG signals.In the initial phase, the signals are acquired from an online database: Database for Emotion Analysis using Physiological Signal (DEAP).Then, the data denoising is carried-out by implementing Empirical Mode Decomposition (EMD) and Variational Mode Decomposition (VMD) filters.These filters aim in eliminating the artifacts and noises in the acquired raw EEG signals, and further, the feature extraction is carried-out utilizing 20 statistical features that extracts discriminative feature information from the decomposed EEG signals.In the last phase, the Long Short Term Memory network (LSTM) is used for human ER as arousal or valence.Additionally, the optimal hyper-parameters of the LSTM network are selected by proposing the Improved Rat Swarm Optimization Algorithm (IRSOA).As denoted in the resulting and discussion section, the IRSOA-LSTM network achieved a mean accuracy of 84.89%, sensitivity of 86.95%, specificity of 86%, precision of 83.68%, and f1-score of 85.28% on the DEAP database.The simulation outcomes state that the proposed IRSOA-LSTM network is better than the existing machine-learning models.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.18280/ria.370205
- https://www.iieta.org/download/file/fid/98137
- OA Status
- bronze
- Cited By
- 4
- References
- 43
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4378418333
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4378418333Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.18280/ria.370205Digital Object Identifier
- Title
-
EEG Based Emotion Recognition Using Long Short Term Memory Network with Improved Rat Swarm Optimization AlgorithmWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-04-30Full publication date if available
- Authors
-
Amrendra Tripathi, Tanupriya ChoudhuryList of authors in order
- Landing page
-
https://doi.org/10.18280/ria.370205Publisher landing page
- PDF URL
-
https://www.iieta.org/download/file/fid/98137Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://www.iieta.org/download/file/fid/98137Direct OA link when available
- Concepts
-
Term (time), Computer science, Swarm behaviour, Long short term memory, Electroencephalography, Optimization algorithm, Pattern recognition (psychology), Algorithm, Artificial intelligence, Emotion recognition, Speech recognition, Artificial neural network, Psychology, Mathematical optimization, Mathematics, Neuroscience, Recurrent neural network, Quantum mechanics, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
43Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4378418333 |
|---|---|
| doi | https://doi.org/10.18280/ria.370205 |
| ids.doi | https://doi.org/10.18280/ria.370205 |
| ids.openalex | https://openalex.org/W4378418333 |
| fwci | 0.66353559 |
| type | article |
| title | EEG Based Emotion Recognition Using Long Short Term Memory Network with Improved Rat Swarm Optimization Algorithm |
| biblio.issue | 2 |
| biblio.volume | 37 |
| biblio.last_page | 289 |
| biblio.first_page | 281 |
| topics[0].id | https://openalex.org/T12222 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.7781999707221985 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | IoT-based Smart Home Systems |
| topics[1].id | https://openalex.org/T10429 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.760200023651123 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2805 |
| topics[1].subfield.display_name | Cognitive Neuroscience |
| topics[1].display_name | EEG and Brain-Computer Interfaces |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C61797465 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7087414264678955 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1188986 |
| concepts[0].display_name | Term (time) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6185594797134399 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C181335050 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5697338581085205 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q14915018 |
| concepts[2].display_name | Swarm behaviour |
| concepts[3].id | https://openalex.org/C133488467 |
| concepts[3].level | 4 |
| concepts[3].score | 0.5558308362960815 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q6673524 |
| concepts[3].display_name | Long short term memory |
| concepts[4].id | https://openalex.org/C522805319 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5489603877067566 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q179965 |
| concepts[4].display_name | Electroencephalography |
| concepts[5].id | https://openalex.org/C2987595161 |
| concepts[5].level | 2 |
| concepts[5].score | 0.46795547008514404 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[5].display_name | Optimization algorithm |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.45753908157348633 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C11413529 |
| concepts[7].level | 1 |
| concepts[7].score | 0.45106250047683716 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[7].display_name | Algorithm |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4408973157405853 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C2777438025 |
| concepts[9].level | 2 |
| concepts[9].score | 0.430949330329895 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1339090 |
| concepts[9].display_name | Emotion recognition |
| concepts[10].id | https://openalex.org/C28490314 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3294142484664917 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[10].display_name | Speech recognition |
| concepts[11].id | https://openalex.org/C50644808 |
| concepts[11].level | 2 |
| concepts[11].score | 0.2165142297744751 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[11].display_name | Artificial neural network |
| concepts[12].id | https://openalex.org/C15744967 |
| concepts[12].level | 0 |
| concepts[12].score | 0.1811639964580536 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[12].display_name | Psychology |
| concepts[13].id | https://openalex.org/C126255220 |
| concepts[13].level | 1 |
| concepts[13].score | 0.1291811466217041 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[13].display_name | Mathematical optimization |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.1235298216342926 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C169760540 |
| concepts[15].level | 1 |
| concepts[15].score | 0.11429712176322937 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[15].display_name | Neuroscience |
| concepts[16].id | https://openalex.org/C147168706 |
| concepts[16].level | 3 |
| concepts[16].score | 0.10467684268951416 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1457734 |
| concepts[16].display_name | Recurrent neural network |
| concepts[17].id | https://openalex.org/C62520636 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[17].display_name | Quantum mechanics |
| concepts[18].id | https://openalex.org/C121332964 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[18].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/term |
| keywords[0].score | 0.7087414264678955 |
| keywords[0].display_name | Term (time) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6185594797134399 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/swarm-behaviour |
| keywords[2].score | 0.5697338581085205 |
| keywords[2].display_name | Swarm behaviour |
| keywords[3].id | https://openalex.org/keywords/long-short-term-memory |
| keywords[3].score | 0.5558308362960815 |
| keywords[3].display_name | Long short term memory |
| keywords[4].id | https://openalex.org/keywords/electroencephalography |
| keywords[4].score | 0.5489603877067566 |
| keywords[4].display_name | Electroencephalography |
| keywords[5].id | https://openalex.org/keywords/optimization-algorithm |
| keywords[5].score | 0.46795547008514404 |
| keywords[5].display_name | Optimization algorithm |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.45753908157348633 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/algorithm |
| keywords[7].score | 0.45106250047683716 |
| keywords[7].display_name | Algorithm |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.4408973157405853 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/emotion-recognition |
| keywords[9].score | 0.430949330329895 |
| keywords[9].display_name | Emotion recognition |
| keywords[10].id | https://openalex.org/keywords/speech-recognition |
| keywords[10].score | 0.3294142484664917 |
| keywords[10].display_name | Speech recognition |
| keywords[11].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[11].score | 0.2165142297744751 |
| keywords[11].display_name | Artificial neural network |
| keywords[12].id | https://openalex.org/keywords/psychology |
| keywords[12].score | 0.1811639964580536 |
| keywords[12].display_name | Psychology |
| keywords[13].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[13].score | 0.1291811466217041 |
| keywords[13].display_name | Mathematical optimization |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.1235298216342926 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/neuroscience |
| keywords[15].score | 0.11429712176322937 |
| keywords[15].display_name | Neuroscience |
| keywords[16].id | https://openalex.org/keywords/recurrent-neural-network |
| keywords[16].score | 0.10467684268951416 |
| keywords[16].display_name | Recurrent neural network |
| language | en |
| locations[0].id | doi:10.18280/ria.370205 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210205895 |
| locations[0].source.issn | 0992-499X, 1958-5748 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0992-499X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Revue d intelligence artificielle |
| locations[0].source.host_organization | https://openalex.org/P4310312982 |
| locations[0].source.host_organization_name | International Information and Engineering Technology Association |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310312982 |
| locations[0].source.host_organization_lineage_names | International Information and Engineering Technology Association |
| locations[0].license | |
| locations[0].pdf_url | https://www.iieta.org/download/file/fid/98137 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Revue d'Intelligence Artificielle |
| locations[0].landing_page_url | https://doi.org/10.18280/ria.370205 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5057757150 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2350-4012 |
| authorships[0].author.display_name | Amrendra Tripathi |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I5847235 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer Science, University of Petroleum and Energy Studies, Dehradun 248007, India |
| authorships[0].institutions[0].id | https://openalex.org/I5847235 |
| authorships[0].institutions[0].ror | https://ror.org/04q2jes40 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I5847235 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | University of Petroleum and Energy Studies |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Amrendra Tripathi |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | School of Computer Science, University of Petroleum and Energy Studies, Dehradun 248007, India |
| authorships[1].author.id | https://openalex.org/A5021051196 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9826-2759 |
| authorships[1].author.display_name | Tanupriya Choudhury |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I5847235 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer Science, University of Petroleum and Energy Studies, Dehradun 248007, India |
| authorships[1].institutions[0].id | https://openalex.org/I5847235 |
| authorships[1].institutions[0].ror | https://ror.org/04q2jes40 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I5847235 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | University of Petroleum and Energy Studies |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Tanupriya Choudhury |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Computer Science, University of Petroleum and Energy Studies, Dehradun 248007, India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.iieta.org/download/file/fid/98137 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | EEG Based Emotion Recognition Using Long Short Term Memory Network with Improved Rat Swarm Optimization Algorithm |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12222 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.7781999707221985 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | IoT-based Smart Home Systems |
| related_works | https://openalex.org/W2736680465, https://openalex.org/W4288714711, https://openalex.org/W3200708550, https://openalex.org/W2771637876, https://openalex.org/W4240853094, https://openalex.org/W4294093918, https://openalex.org/W2810496283, https://openalex.org/W3089879900, https://openalex.org/W2170656329, https://openalex.org/W3131977017 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.18280/ria.370205 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210205895 |
| best_oa_location.source.issn | 0992-499X, 1958-5748 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0992-499X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Revue d intelligence artificielle |
| best_oa_location.source.host_organization | https://openalex.org/P4310312982 |
| best_oa_location.source.host_organization_name | International Information and Engineering Technology Association |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310312982 |
| best_oa_location.source.host_organization_lineage_names | International Information and Engineering Technology Association |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.iieta.org/download/file/fid/98137 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Revue d'Intelligence Artificielle |
| best_oa_location.landing_page_url | https://doi.org/10.18280/ria.370205 |
| primary_location.id | doi:10.18280/ria.370205 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210205895 |
| primary_location.source.issn | 0992-499X, 1958-5748 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0992-499X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Revue d intelligence artificielle |
| primary_location.source.host_organization | https://openalex.org/P4310312982 |
| primary_location.source.host_organization_name | International Information and Engineering Technology Association |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310312982 |
| primary_location.source.host_organization_lineage_names | International Information and Engineering Technology Association |
| primary_location.license | |
| primary_location.pdf_url | https://www.iieta.org/download/file/fid/98137 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Revue d'Intelligence Artificielle |
| primary_location.landing_page_url | https://doi.org/10.18280/ria.370205 |
| publication_date | 2023-04-30 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3108564553, https://openalex.org/W3130068643, https://openalex.org/W3010734943, https://openalex.org/W3119290801, https://openalex.org/W3121961436, https://openalex.org/W3045518516, https://openalex.org/W2996350645, https://openalex.org/W3177392932, https://openalex.org/W3191506960, https://openalex.org/W3175707965, https://openalex.org/W3120598210, https://openalex.org/W3169095106, https://openalex.org/W3128898807, https://openalex.org/W2985653130, https://openalex.org/W3044186523, https://openalex.org/W2002055708, https://openalex.org/W3085160563, https://openalex.org/W2922188941, https://openalex.org/W2902877680, https://openalex.org/W3081599307, https://openalex.org/W2983840038, https://openalex.org/W2891840684, https://openalex.org/W3110327404, https://openalex.org/W2803458449, https://openalex.org/W3108087271, https://openalex.org/W3156356077, https://openalex.org/W3114802091, https://openalex.org/W3193300679, https://openalex.org/W2982299617, https://openalex.org/W2467010667, https://openalex.org/W2790404832, https://openalex.org/W2897751982, https://openalex.org/W2944401411, https://openalex.org/W3025630664, https://openalex.org/W3021351070, https://openalex.org/W3125908420, https://openalex.org/W2901469855, https://openalex.org/W3036587423, https://openalex.org/W3109528530, https://openalex.org/W2892870261, https://openalex.org/W2896723775, https://openalex.org/W2944851425, https://openalex.org/W3046463181 |
| referenced_works_count | 43 |
| abstract_inverted_index.a | 20, 45, 176 |
| abstract_inverted_index.20 | 115 |
| abstract_inverted_index.ER | 53, 142 |
| abstract_inverted_index.an | 65 |
| abstract_inverted_index.as | 143 |
| abstract_inverted_index.by | 81, 156 |
| abstract_inverted_index.in | 95, 101, 166 |
| abstract_inverted_index.is | 49, 79, 112, 138, 206 |
| abstract_inverted_index.of | 23, 28, 38, 150, 179, 182, 185, 188, 192 |
| abstract_inverted_index.on | 7, 35, 194 |
| abstract_inverted_index.or | 145 |
| abstract_inverted_index.EEG | 40, 55, 105, 126 |
| abstract_inverted_index.Rat | 160 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.aim | 94 |
| abstract_inverted_index.and | 87, 99, 107, 169, 190 |
| abstract_inverted_index.are | 62, 154 |
| abstract_inverted_index.for | 51, 69, 140 |
| abstract_inverted_index.has | 11 |
| abstract_inverted_index.not | 33 |
| abstract_inverted_index.raw | 104 |
| abstract_inverted_index.the | 16, 29, 36, 39, 57, 60, 76, 97, 102, 109, 124, 128, 131, 147, 151, 158, 167, 172, 195, 202, 209 |
| abstract_inverted_index.(ER) | 5 |
| abstract_inverted_index.86%, | 186 |
| abstract_inverted_index.DEAP | 196 |
| abstract_inverted_index.LSTM | 152 |
| abstract_inverted_index.Long | 132 |
| abstract_inverted_index.Mode | 84, 89 |
| abstract_inverted_index.Term | 134 |
| abstract_inverted_index.data | 77 |
| abstract_inverted_index.from | 64, 123 |
| abstract_inverted_index.have | 32 |
| abstract_inverted_index.last | 129 |
| abstract_inverted_index.mean | 177 |
| abstract_inverted_index.more | 13 |
| abstract_inverted_index.than | 208 |
| abstract_inverted_index.that | 118, 201 |
| abstract_inverted_index.this | 42 |
| abstract_inverted_index.used | 139 |
| abstract_inverted_index.with | 19 |
| abstract_inverted_index.(EEG) | 9 |
| abstract_inverted_index.(EMD) | 86 |
| abstract_inverted_index.(VMD) | 91 |
| abstract_inverted_index.Human | 24 |
| abstract_inverted_index.Short | 133 |
| abstract_inverted_index.Swarm | 161 |
| abstract_inverted_index.among | 15 |
| abstract_inverted_index.based | 6 |
| abstract_inverted_index.human | 2, 141 |
| abstract_inverted_index.model | 48 |
| abstract_inverted_index.novel | 46 |
| abstract_inverted_index.prior | 30 |
| abstract_inverted_index.rapid | 21 |
| abstract_inverted_index.state | 200 |
| abstract_inverted_index.using | 54, 72 |
| abstract_inverted_index.(LSTM) | 137 |
| abstract_inverted_index.85.28% | 193 |
| abstract_inverted_index.Memory | 135 |
| abstract_inverted_index.Signal | 74 |
| abstract_inverted_index.better | 207 |
| abstract_inverted_index.gained | 12 |
| abstract_inverted_index.growth | 22 |
| abstract_inverted_index.models | 31 |
| abstract_inverted_index.noises | 100 |
| abstract_inverted_index.online | 66 |
| abstract_inverted_index.phase, | 59, 130 |
| abstract_inverted_index.signal | 10 |
| abstract_inverted_index.83.68%, | 189 |
| abstract_inverted_index.84.89%, | 180 |
| abstract_inverted_index.86.95%, | 183 |
| abstract_inverted_index.Emotion | 3, 70 |
| abstract_inverted_index.arousal | 144 |
| abstract_inverted_index.denoted | 165 |
| abstract_inverted_index.feature | 110, 121 |
| abstract_inverted_index.filters | 93 |
| abstract_inverted_index.focused | 34 |
| abstract_inverted_index.initial | 58 |
| abstract_inverted_index.models. | 212 |
| abstract_inverted_index.network | 136, 153, 174, 205 |
| abstract_inverted_index.optimal | 148 |
| abstract_inverted_index.signals | 61 |
| abstract_inverted_index.Analysis | 71 |
| abstract_inverted_index.Computer | 25 |
| abstract_inverted_index.Database | 68 |
| abstract_inverted_index.Improved | 159 |
| abstract_inverted_index.accuracy | 178 |
| abstract_inverted_index.achieved | 175 |
| abstract_inverted_index.acquired | 63, 103 |
| abstract_inverted_index.existing | 210 |
| abstract_inverted_index.extracts | 119 |
| abstract_inverted_index.f1-score | 191 |
| abstract_inverted_index.features | 117 |
| abstract_inverted_index.further, | 108 |
| abstract_inverted_index.outcomes | 199 |
| abstract_inverted_index.proposed | 203 |
| abstract_inverted_index.research | 43 |
| abstract_inverted_index.section, | 171 |
| abstract_inverted_index.selected | 155 |
| abstract_inverted_index.signals, | 106 |
| abstract_inverted_index.Algorithm | 163 |
| abstract_inverted_index.Empirical | 83 |
| abstract_inverted_index.artifacts | 98 |
| abstract_inverted_index.attention | 14 |
| abstract_inverted_index.automated | 47 |
| abstract_inverted_index.automatic | 1 |
| abstract_inverted_index.database: | 67 |
| abstract_inverted_index.denoising | 78 |
| abstract_inverted_index.improving | 52 |
| abstract_inverted_index.precision | 187 |
| abstract_inverted_index.proposing | 157 |
| abstract_inverted_index.resulting | 168 |
| abstract_inverted_index.utilizing | 114 |
| abstract_inverted_index.(HCI).Most | 27 |
| abstract_inverted_index.(IRSOA).As | 164 |
| abstract_inverted_index.IRSOA-LSTM | 173, 204 |
| abstract_inverted_index.decomposed | 125 |
| abstract_inverted_index.discussion | 170 |
| abstract_inverted_index.extraction | 111 |
| abstract_inverted_index.researcher | 17 |
| abstract_inverted_index.signals.In | 41, 56, 127 |
| abstract_inverted_index.simulation | 198 |
| abstract_inverted_index.Interaction | 26 |
| abstract_inverted_index.Recognition | 4 |
| abstract_inverted_index.Variational | 88 |
| abstract_inverted_index.carried-out | 80, 113 |
| abstract_inverted_index.communities | 18 |
| abstract_inverted_index.eliminating | 96 |
| abstract_inverted_index.implemented | 50 |
| abstract_inverted_index.information | 122 |
| abstract_inverted_index.manuscript, | 44 |
| abstract_inverted_index.sensitivity | 181 |
| abstract_inverted_index.specificity | 184 |
| abstract_inverted_index.statistical | 116 |
| abstract_inverted_index.(DEAP).Then, | 75 |
| abstract_inverted_index.Optimization | 162 |
| abstract_inverted_index.database.The | 197 |
| abstract_inverted_index.implementing | 82 |
| abstract_inverted_index.Decomposition | 85, 90 |
| abstract_inverted_index.Physiological | 73 |
| abstract_inverted_index.filters.These | 92 |
| abstract_inverted_index.discriminative | 120 |
| abstract_inverted_index.hyper-parameters | 149 |
| abstract_inverted_index.machine-learning | 211 |
| abstract_inverted_index.context-information | 37 |
| abstract_inverted_index.valence.Additionally, | 146 |
| abstract_inverted_index.Electroencephalography | 8 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5057757150 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I5847235 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.4000000059604645 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.67247249 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |