EEGMamba: Bidirectional State Space Model with Mixture of Experts for EEG Multi-task Classification Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2407.20254
In recent years, with the development of deep learning, electroencephalogram (EEG) classification networks have achieved certain progress. Transformer-based models can perform well in capturing long-term dependencies in EEG signals. However, their quadratic computational complexity poses a substantial computational challenge. Moreover, most EEG classification models are only suitable for single tasks and struggle with generalization across different tasks, particularly when faced with variations in signal length and channel count. In this paper, we introduce EEGMamba, the first universal EEG classification network to truly implement multi-task learning for EEG applications. EEGMamba seamlessly integrates the Spatio-Temporal-Adaptive (ST-Adaptive) module, bidirectional Mamba, and Mixture of Experts (MoE) into a unified framework. The proposed ST-Adaptive module performs unified feature extraction on EEG signals of different lengths and channel counts through spatial-adaptive convolution and incorporates a class token to achieve temporal-adaptability. Moreover, we design a bidirectional Mamba particularly suitable for EEG signals for further feature extraction, balancing high accuracy, fast inference speed, and efficient memory-usage in processing long EEG signals. To enhance the processing of EEG data across multiple tasks, we introduce task-aware MoE with a universal expert, effectively capturing both differences and commonalities among EEG data from different tasks. We evaluate our model on eight publicly available EEG datasets, and the experimental results demonstrate its superior performance in four types of tasks: seizure detection, emotion recognition, sleep stage classification, and motor imagery. The code is set to be released soon.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2407.20254
- https://arxiv.org/pdf/2407.20254
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401202694
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401202694Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2407.20254Digital Object Identifier
- Title
-
EEGMamba: Bidirectional State Space Model with Mixture of Experts for EEG Multi-task ClassificationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-20Full publication date if available
- Authors
-
Yiyu Gui, M. M. CHEN, Yuqi Su, Guibo Luo, Yuchao YangList of authors in order
- Landing page
-
https://arxiv.org/abs/2407.20254Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2407.20254Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2407.20254Direct OA link when available
- Concepts
-
Electroencephalography, Space (punctuation), Computer science, State (computer science), State space, Pattern recognition (psychology), Artificial intelligence, Mathematics, Psychology, Statistics, Algorithm, Neuroscience, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401202694 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2407.20254 |
| ids.doi | https://doi.org/10.48550/arxiv.2407.20254 |
| ids.openalex | https://openalex.org/W4401202694 |
| fwci | |
| type | preprint |
| title | EEGMamba: Bidirectional State Space Model with Mixture of Experts for EEG Multi-task Classification |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10320 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9506000280380249 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Neural Networks and Applications |
| topics[1].id | https://openalex.org/T10429 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9452999830245972 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2805 |
| topics[1].subfield.display_name | Cognitive Neuroscience |
| topics[1].display_name | EEG and Brain-Computer Interfaces |
| topics[2].id | https://openalex.org/T10876 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.942300021648407 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2207 |
| topics[2].subfield.display_name | Control and Systems Engineering |
| topics[2].display_name | Fault Detection and Control Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C522805319 |
| concepts[0].level | 2 |
| concepts[0].score | 0.673041820526123 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q179965 |
| concepts[0].display_name | Electroencephalography |
| concepts[1].id | https://openalex.org/C2778572836 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5433370471000671 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q380933 |
| concepts[1].display_name | Space (punctuation) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5050542950630188 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C48103436 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5007171630859375 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q599031 |
| concepts[3].display_name | State (computer science) |
| concepts[4].id | https://openalex.org/C72434380 |
| concepts[4].level | 2 |
| concepts[4].score | 0.49924302101135254 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q230930 |
| concepts[4].display_name | State space |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.47503167390823364 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4437965154647827 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.22372207045555115 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C15744967 |
| concepts[8].level | 0 |
| concepts[8].score | 0.18677332997322083 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[8].display_name | Psychology |
| concepts[9].id | https://openalex.org/C105795698 |
| concepts[9].level | 1 |
| concepts[9].score | 0.16288107633590698 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[9].display_name | Statistics |
| concepts[10].id | https://openalex.org/C11413529 |
| concepts[10].level | 1 |
| concepts[10].score | 0.13974180817604065 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[10].display_name | Algorithm |
| concepts[11].id | https://openalex.org/C169760540 |
| concepts[11].level | 1 |
| concepts[11].score | 0.09224650263786316 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[11].display_name | Neuroscience |
| concepts[12].id | https://openalex.org/C111919701 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[12].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/electroencephalography |
| keywords[0].score | 0.673041820526123 |
| keywords[0].display_name | Electroencephalography |
| keywords[1].id | https://openalex.org/keywords/space |
| keywords[1].score | 0.5433370471000671 |
| keywords[1].display_name | Space (punctuation) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5050542950630188 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/state |
| keywords[3].score | 0.5007171630859375 |
| keywords[3].display_name | State (computer science) |
| keywords[4].id | https://openalex.org/keywords/state-space |
| keywords[4].score | 0.49924302101135254 |
| keywords[4].display_name | State space |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.47503167390823364 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.4437965154647827 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.22372207045555115 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/psychology |
| keywords[8].score | 0.18677332997322083 |
| keywords[8].display_name | Psychology |
| keywords[9].id | https://openalex.org/keywords/statistics |
| keywords[9].score | 0.16288107633590698 |
| keywords[9].display_name | Statistics |
| keywords[10].id | https://openalex.org/keywords/algorithm |
| keywords[10].score | 0.13974180817604065 |
| keywords[10].display_name | Algorithm |
| keywords[11].id | https://openalex.org/keywords/neuroscience |
| keywords[11].score | 0.09224650263786316 |
| keywords[11].display_name | Neuroscience |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2407.20254 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2407.20254 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2407.20254 |
| locations[1].id | doi:10.48550/arxiv.2407.20254 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2407.20254 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5108328530 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Yiyu Gui |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Gui, Yiyu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5031683218 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | M. M. CHEN |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chen, MingZhi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5063544400 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8042-8696 |
| authorships[2].author.display_name | Yuqi Su |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Su, Yuqi |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5057015645 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1709-1207 |
| authorships[3].author.display_name | Guibo Luo |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Luo, Guibo |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5057584787 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4674-4059 |
| authorships[4].author.display_name | Yuchao Yang |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yang, Yuchao |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2407.20254 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-08-01T00:00:00 |
| display_name | EEGMamba: Bidirectional State Space Model with Mixture of Experts for EEG Multi-task Classification |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10320 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9506000280380249 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Neural Networks and Applications |
| related_works | https://openalex.org/W2922348724, https://openalex.org/W200322357, https://openalex.org/W2130428257, https://openalex.org/W4308951944, https://openalex.org/W2057366091, https://openalex.org/W2049513647, https://openalex.org/W2988848585, https://openalex.org/W4233722919, https://openalex.org/W4323929055, https://openalex.org/W4312960290 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2407.20254 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2407.20254 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2407.20254 |
| primary_location.id | pmh:oai:arXiv.org:2407.20254 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2407.20254 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2407.20254 |
| publication_date | 2024-07-20 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 35, 103, 128, 137, 178 |
| abstract_inverted_index.In | 0, 68 |
| abstract_inverted_index.To | 163 |
| abstract_inverted_index.We | 193 |
| abstract_inverted_index.be | 231 |
| abstract_inverted_index.in | 22, 26, 62, 158, 211 |
| abstract_inverted_index.is | 228 |
| abstract_inverted_index.of | 6, 99, 117, 167, 214 |
| abstract_inverted_index.on | 114, 197 |
| abstract_inverted_index.to | 80, 131, 230 |
| abstract_inverted_index.we | 71, 135, 173 |
| abstract_inverted_index.EEG | 27, 41, 77, 86, 115, 143, 161, 168, 188, 201 |
| abstract_inverted_index.MoE | 176 |
| abstract_inverted_index.The | 106, 226 |
| abstract_inverted_index.and | 50, 65, 97, 120, 126, 155, 185, 203, 223 |
| abstract_inverted_index.are | 44 |
| abstract_inverted_index.can | 19 |
| abstract_inverted_index.for | 47, 85, 142, 145 |
| abstract_inverted_index.its | 208 |
| abstract_inverted_index.our | 195 |
| abstract_inverted_index.set | 229 |
| abstract_inverted_index.the | 4, 74, 91, 165, 204 |
| abstract_inverted_index.both | 183 |
| abstract_inverted_index.code | 227 |
| abstract_inverted_index.data | 169, 189 |
| abstract_inverted_index.deep | 7 |
| abstract_inverted_index.fast | 152 |
| abstract_inverted_index.four | 212 |
| abstract_inverted_index.from | 190 |
| abstract_inverted_index.have | 13 |
| abstract_inverted_index.high | 150 |
| abstract_inverted_index.into | 102 |
| abstract_inverted_index.long | 160 |
| abstract_inverted_index.most | 40 |
| abstract_inverted_index.only | 45 |
| abstract_inverted_index.this | 69 |
| abstract_inverted_index.well | 21 |
| abstract_inverted_index.when | 58 |
| abstract_inverted_index.with | 3, 52, 60, 177 |
| abstract_inverted_index.(EEG) | 10 |
| abstract_inverted_index.(MoE) | 101 |
| abstract_inverted_index.Mamba | 139 |
| abstract_inverted_index.among | 187 |
| abstract_inverted_index.class | 129 |
| abstract_inverted_index.eight | 198 |
| abstract_inverted_index.faced | 59 |
| abstract_inverted_index.first | 75 |
| abstract_inverted_index.model | 196 |
| abstract_inverted_index.motor | 224 |
| abstract_inverted_index.poses | 34 |
| abstract_inverted_index.sleep | 220 |
| abstract_inverted_index.soon. | 233 |
| abstract_inverted_index.stage | 221 |
| abstract_inverted_index.tasks | 49 |
| abstract_inverted_index.their | 30 |
| abstract_inverted_index.token | 130 |
| abstract_inverted_index.truly | 81 |
| abstract_inverted_index.types | 213 |
| abstract_inverted_index.Mamba, | 96 |
| abstract_inverted_index.across | 54, 170 |
| abstract_inverted_index.count. | 67 |
| abstract_inverted_index.counts | 122 |
| abstract_inverted_index.design | 136 |
| abstract_inverted_index.length | 64 |
| abstract_inverted_index.models | 18, 43 |
| abstract_inverted_index.module | 109 |
| abstract_inverted_index.paper, | 70 |
| abstract_inverted_index.recent | 1 |
| abstract_inverted_index.signal | 63 |
| abstract_inverted_index.single | 48 |
| abstract_inverted_index.speed, | 154 |
| abstract_inverted_index.tasks, | 56, 172 |
| abstract_inverted_index.tasks. | 192 |
| abstract_inverted_index.tasks: | 215 |
| abstract_inverted_index.years, | 2 |
| abstract_inverted_index.Experts | 100 |
| abstract_inverted_index.Mixture | 98 |
| abstract_inverted_index.achieve | 132 |
| abstract_inverted_index.certain | 15 |
| abstract_inverted_index.channel | 66, 121 |
| abstract_inverted_index.emotion | 218 |
| abstract_inverted_index.enhance | 164 |
| abstract_inverted_index.expert, | 180 |
| abstract_inverted_index.feature | 112, 147 |
| abstract_inverted_index.further | 146 |
| abstract_inverted_index.lengths | 119 |
| abstract_inverted_index.module, | 94 |
| abstract_inverted_index.network | 79 |
| abstract_inverted_index.perform | 20 |
| abstract_inverted_index.results | 206 |
| abstract_inverted_index.seizure | 216 |
| abstract_inverted_index.signals | 116, 144 |
| abstract_inverted_index.through | 123 |
| abstract_inverted_index.unified | 104, 111 |
| abstract_inverted_index.EEGMamba | 88 |
| abstract_inverted_index.However, | 29 |
| abstract_inverted_index.achieved | 14 |
| abstract_inverted_index.evaluate | 194 |
| abstract_inverted_index.imagery. | 225 |
| abstract_inverted_index.learning | 84 |
| abstract_inverted_index.multiple | 171 |
| abstract_inverted_index.networks | 12 |
| abstract_inverted_index.performs | 110 |
| abstract_inverted_index.proposed | 107 |
| abstract_inverted_index.publicly | 199 |
| abstract_inverted_index.released | 232 |
| abstract_inverted_index.signals. | 28, 162 |
| abstract_inverted_index.struggle | 51 |
| abstract_inverted_index.suitable | 46, 141 |
| abstract_inverted_index.superior | 209 |
| abstract_inverted_index.EEGMamba, | 73 |
| abstract_inverted_index.Moreover, | 39, 134 |
| abstract_inverted_index.accuracy, | 151 |
| abstract_inverted_index.available | 200 |
| abstract_inverted_index.balancing | 149 |
| abstract_inverted_index.capturing | 23, 182 |
| abstract_inverted_index.datasets, | 202 |
| abstract_inverted_index.different | 55, 118, 191 |
| abstract_inverted_index.efficient | 156 |
| abstract_inverted_index.implement | 82 |
| abstract_inverted_index.inference | 153 |
| abstract_inverted_index.introduce | 72, 174 |
| abstract_inverted_index.learning, | 8 |
| abstract_inverted_index.long-term | 24 |
| abstract_inverted_index.progress. | 16 |
| abstract_inverted_index.quadratic | 31 |
| abstract_inverted_index.universal | 76, 179 |
| abstract_inverted_index.challenge. | 38 |
| abstract_inverted_index.complexity | 33 |
| abstract_inverted_index.detection, | 217 |
| abstract_inverted_index.extraction | 113 |
| abstract_inverted_index.framework. | 105 |
| abstract_inverted_index.integrates | 90 |
| abstract_inverted_index.multi-task | 83 |
| abstract_inverted_index.processing | 159, 166 |
| abstract_inverted_index.seamlessly | 89 |
| abstract_inverted_index.task-aware | 175 |
| abstract_inverted_index.variations | 61 |
| abstract_inverted_index.ST-Adaptive | 108 |
| abstract_inverted_index.convolution | 125 |
| abstract_inverted_index.demonstrate | 207 |
| abstract_inverted_index.development | 5 |
| abstract_inverted_index.differences | 184 |
| abstract_inverted_index.effectively | 181 |
| abstract_inverted_index.extraction, | 148 |
| abstract_inverted_index.performance | 210 |
| abstract_inverted_index.substantial | 36 |
| abstract_inverted_index.dependencies | 25 |
| abstract_inverted_index.experimental | 205 |
| abstract_inverted_index.incorporates | 127 |
| abstract_inverted_index.memory-usage | 157 |
| abstract_inverted_index.particularly | 57, 140 |
| abstract_inverted_index.recognition, | 219 |
| abstract_inverted_index.(ST-Adaptive) | 93 |
| abstract_inverted_index.applications. | 87 |
| abstract_inverted_index.bidirectional | 95, 138 |
| abstract_inverted_index.commonalities | 186 |
| abstract_inverted_index.computational | 32, 37 |
| abstract_inverted_index.classification | 11, 42, 78 |
| abstract_inverted_index.generalization | 53 |
| abstract_inverted_index.classification, | 222 |
| abstract_inverted_index.spatial-adaptive | 124 |
| abstract_inverted_index.Transformer-based | 17 |
| abstract_inverted_index.electroencephalogram | 9 |
| abstract_inverted_index.temporal-adaptability. | 133 |
| abstract_inverted_index.Spatio-Temporal-Adaptive | 92 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |