EFF_D_SVM: a robust multi-type brain tumor classification system Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3389/fnins.2023.1269100
Brain tumors are one of the most threatening diseases to human health. Accurate identification of the type of brain tumor is essential for patients and doctors. An automated brain tumor diagnosis system based on Magnetic Resonance Imaging (MRI) can help doctors to identify the type of tumor and reduce their workload, so it is vital to improve the performance of such systems. Due to the challenge of collecting sufficient data on brain tumors, utilizing pre-trained Convolutional Neural Network (CNN) models for brain tumors classification is a feasible approach. The study proposes a novel brain tumor classification system, called EFF_D_SVM, which is developed on the basic of pre-trained EfficientNetB0 model. Firstly, a new feature extraction module EFF_D was proposed, in which the classification layer of EfficientNetB0 was replaced with two dropout layers and two dense layers. Secondly, the EFF_D model was fine-tuned using Softmax, and then features of brain tumor images were extracted using the fine-tuned EFF_D. Finally, the features were classified using Support Vector Machine (SVM). In order to verify the effectiveness of the proposed brain tumor classification system, a series of comparative experiments were carried out. Moreover, to understand the extracted features of the brain tumor images, Grad-CAM technology was used to visualize the proposed model. Furthermore, cross-validation was conducted to verify the robustness of the proposed model. The evaluation metrics including accuracy, F1-score, recall, and precision were used to evaluate proposed system performance. The experimental results indicate that the proposed model is superior to other state-of-the-art models.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3389/fnins.2023.1269100
- https://www.frontiersin.org/articles/10.3389/fnins.2023.1269100/pdf?isPublishedV2=False
- OA Status
- gold
- Cited By
- 10
- References
- 48
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387213005
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387213005Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/fnins.2023.1269100Digital Object Identifier
- Title
-
EFF_D_SVM: a robust multi-type brain tumor classification systemWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-09-29Full publication date if available
- Authors
-
Jincan Zhang, Xinghua Tan, Wenna Chen, Ganqin Du, Qizhi Fu, Hongri Zhang, Hongwei� JiangList of authors in order
- Landing page
-
https://doi.org/10.3389/fnins.2023.1269100Publisher landing page
- PDF URL
-
https://www.frontiersin.org/articles/10.3389/fnins.2023.1269100/pdf?isPublishedV2=FalseDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.frontiersin.org/articles/10.3389/fnins.2023.1269100/pdf?isPublishedV2=FalseDirect OA link when available
- Concepts
-
Support vector machine, Computer science, Artificial intelligence, Brain tumor, Softmax function, Pattern recognition (psychology), Convolutional neural network, Robustness (evolution), Machine learning, Medicine, Pathology, Chemistry, Biochemistry, GeneTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
10Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 5Per-year citation counts (last 5 years)
- References (count)
-
48Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387213005 |
|---|---|
| doi | https://doi.org/10.3389/fnins.2023.1269100 |
| ids.doi | https://doi.org/10.3389/fnins.2023.1269100 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/37841686 |
| ids.openalex | https://openalex.org/W4387213005 |
| fwci | 2.22275379 |
| type | article |
| title | EFF_D_SVM: a robust multi-type brain tumor classification system |
| biblio.issue | |
| biblio.volume | 17 |
| biblio.last_page | 1269100 |
| biblio.first_page | 1269100 |
| topics[0].id | https://openalex.org/T12702 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2808 |
| topics[0].subfield.display_name | Neurology |
| topics[0].display_name | Brain Tumor Detection and Classification |
| topics[1].id | https://openalex.org/T12676 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.992900013923645 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning and ELM |
| topics[2].id | https://openalex.org/T10036 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9925000071525574 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Neural Network Applications |
| is_xpac | False |
| apc_list.value | 2950 |
| apc_list.currency | USD |
| apc_list.value_usd | 2950 |
| apc_paid.value | 2950 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2950 |
| concepts[0].id | https://openalex.org/C12267149 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7681103944778442 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[0].display_name | Support vector machine |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7341424226760864 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.7123969197273254 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2779130545 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6208512783050537 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q233309 |
| concepts[3].display_name | Brain tumor |
| concepts[4].id | https://openalex.org/C188441871 |
| concepts[4].level | 3 |
| concepts[4].score | 0.6198142766952515 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7554146 |
| concepts[4].display_name | Softmax function |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4786011874675751 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C81363708 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4762282967567444 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[6].display_name | Convolutional neural network |
| concepts[7].id | https://openalex.org/C63479239 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4447602331638336 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[7].display_name | Robustness (evolution) |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.323087215423584 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C71924100 |
| concepts[9].level | 0 |
| concepts[9].score | 0.12139713764190674 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[9].display_name | Medicine |
| concepts[10].id | https://openalex.org/C142724271 |
| concepts[10].level | 1 |
| concepts[10].score | 0.09144943952560425 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[10].display_name | Pathology |
| concepts[11].id | https://openalex.org/C185592680 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[11].display_name | Chemistry |
| concepts[12].id | https://openalex.org/C55493867 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[12].display_name | Biochemistry |
| concepts[13].id | https://openalex.org/C104317684 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[13].display_name | Gene |
| keywords[0].id | https://openalex.org/keywords/support-vector-machine |
| keywords[0].score | 0.7681103944778442 |
| keywords[0].display_name | Support vector machine |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7341424226760864 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.7123969197273254 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/brain-tumor |
| keywords[3].score | 0.6208512783050537 |
| keywords[3].display_name | Brain tumor |
| keywords[4].id | https://openalex.org/keywords/softmax-function |
| keywords[4].score | 0.6198142766952515 |
| keywords[4].display_name | Softmax function |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.4786011874675751 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[6].score | 0.4762282967567444 |
| keywords[6].display_name | Convolutional neural network |
| keywords[7].id | https://openalex.org/keywords/robustness |
| keywords[7].score | 0.4447602331638336 |
| keywords[7].display_name | Robustness (evolution) |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.323087215423584 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/medicine |
| keywords[9].score | 0.12139713764190674 |
| keywords[9].display_name | Medicine |
| keywords[10].id | https://openalex.org/keywords/pathology |
| keywords[10].score | 0.09144943952560425 |
| keywords[10].display_name | Pathology |
| language | en |
| locations[0].id | doi:10.3389/fnins.2023.1269100 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S115201632 |
| locations[0].source.issn | 1662-453X, 1662-4548 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1662-453X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Neuroscience |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_lineage_names | Frontiers Media |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.frontiersin.org/articles/10.3389/fnins.2023.1269100/pdf?isPublishedV2=False |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Neuroscience |
| locations[0].landing_page_url | https://doi.org/10.3389/fnins.2023.1269100 |
| locations[1].id | pmid:37841686 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Frontiers in neuroscience |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/37841686 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10570803 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10570803/pdf/fnins-17-1269100.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Front Neurosci |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10570803 |
| locations[3].id | pmh:oai:doaj.org/article:395bcc48ba4b4ac7abc87e8471f8eb7a |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Frontiers in Neuroscience, Vol 17 (2023) |
| locations[3].landing_page_url | https://doaj.org/article/395bcc48ba4b4ac7abc87e8471f8eb7a |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5101923573 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8317-764X |
| authorships[0].author.display_name | Jincan Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I167383011 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Information Engineering, Henan University of Science and Technology, Luoyang, China |
| authorships[0].institutions[0].id | https://openalex.org/I167383011 |
| authorships[0].institutions[0].ror | https://ror.org/05d80kz58 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I167383011 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Henan University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jincan Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Information Engineering, Henan University of Science and Technology, Luoyang, China |
| authorships[1].author.id | https://openalex.org/A5074794017 |
| authorships[1].author.orcid | https://orcid.org/0009-0005-3812-533X |
| authorships[1].author.display_name | Xinghua Tan |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I167383011 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Information Engineering, Henan University of Science and Technology, Luoyang, China |
| authorships[1].institutions[0].id | https://openalex.org/I167383011 |
| authorships[1].institutions[0].ror | https://ror.org/05d80kz58 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I167383011 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Henan University of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xinghua Tan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Information Engineering, Henan University of Science and Technology, Luoyang, China |
| authorships[2].author.id | https://openalex.org/A5042955432 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2543-8271 |
| authorships[2].author.display_name | Wenna Chen |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210134906 |
| authorships[2].affiliations[0].raw_affiliation_string | The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210134906 |
| authorships[2].institutions[0].ror | https://ror.org/035zbbv42 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210134906 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | First Affiliated Hospital of Henan University of Science and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wenna Chen |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China |
| authorships[3].author.id | https://openalex.org/A5100936517 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9097-2505 |
| authorships[3].author.display_name | Ganqin Du |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210134906 |
| authorships[3].affiliations[0].raw_affiliation_string | The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210134906 |
| authorships[3].institutions[0].ror | https://ror.org/035zbbv42 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210134906 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | First Affiliated Hospital of Henan University of Science and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ganqin Du |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China |
| authorships[4].author.id | https://openalex.org/A5002107636 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8738-0250 |
| authorships[4].author.display_name | Qizhi Fu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210134906 |
| authorships[4].affiliations[0].raw_affiliation_string | The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210134906 |
| authorships[4].institutions[0].ror | https://ror.org/035zbbv42 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210134906 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | First Affiliated Hospital of Henan University of Science and Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Qizhi Fu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China |
| authorships[5].author.id | https://openalex.org/A5062528302 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-3269-8127 |
| authorships[5].author.display_name | Hongri Zhang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210134906 |
| authorships[5].affiliations[0].raw_affiliation_string | The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China |
| authorships[5].institutions[0].id | https://openalex.org/I4210134906 |
| authorships[5].institutions[0].ror | https://ror.org/035zbbv42 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210134906 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | First Affiliated Hospital of Henan University of Science and Technology |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Hongri Zhang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China |
| authorships[6].author.id | https://openalex.org/A5056125499 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-3807-7989 |
| authorships[6].author.display_name | Hongwei� Jiang |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210134906 |
| authorships[6].affiliations[0].raw_affiliation_string | The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China |
| authorships[6].institutions[0].id | https://openalex.org/I4210134906 |
| authorships[6].institutions[0].ror | https://ror.org/035zbbv42 |
| authorships[6].institutions[0].type | healthcare |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210134906 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | First Affiliated Hospital of Henan University of Science and Technology |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Hongwei Jiang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.frontiersin.org/articles/10.3389/fnins.2023.1269100/pdf?isPublishedV2=False |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | EFF_D_SVM: a robust multi-type brain tumor classification system |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12702 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2808 |
| primary_topic.subfield.display_name | Neurology |
| primary_topic.display_name | Brain Tumor Detection and Classification |
| related_works | https://openalex.org/W3107204728, https://openalex.org/W4287591324, https://openalex.org/W4226420367, https://openalex.org/W2980176872, https://openalex.org/W2962876041, https://openalex.org/W3090555870, https://openalex.org/W3108503355, https://openalex.org/W2249953602, https://openalex.org/W2801655600, https://openalex.org/W2899027234 |
| cited_by_count | 10 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3389/fnins.2023.1269100 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S115201632 |
| best_oa_location.source.issn | 1662-453X, 1662-4548 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1662-453X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Neuroscience |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_lineage_names | Frontiers Media |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.frontiersin.org/articles/10.3389/fnins.2023.1269100/pdf?isPublishedV2=False |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Neuroscience |
| best_oa_location.landing_page_url | https://doi.org/10.3389/fnins.2023.1269100 |
| primary_location.id | doi:10.3389/fnins.2023.1269100 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S115201632 |
| primary_location.source.issn | 1662-453X, 1662-4548 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1662-453X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Neuroscience |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_lineage_names | Frontiers Media |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.frontiersin.org/articles/10.3389/fnins.2023.1269100/pdf?isPublishedV2=False |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Neuroscience |
| primary_location.landing_page_url | https://doi.org/10.3389/fnins.2023.1269100 |
| publication_date | 2023-09-29 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2810138651, https://openalex.org/W4205964412, https://openalex.org/W3030114865, https://openalex.org/W4316039008, https://openalex.org/W2765490497, https://openalex.org/W3096932784, https://openalex.org/W6671158236, https://openalex.org/W3154233376, https://openalex.org/W2182098131, https://openalex.org/W2955805844, https://openalex.org/W4310030439, https://openalex.org/W4220811008, https://openalex.org/W2988141759, https://openalex.org/W3171245364, https://openalex.org/W3166938345, https://openalex.org/W2921483513, https://openalex.org/W4313443585, https://openalex.org/W2897188827, https://openalex.org/W3136979370, https://openalex.org/W3014041368, https://openalex.org/W2916213758, https://openalex.org/W4226305803, https://openalex.org/W3034436104, https://openalex.org/W4309478090, https://openalex.org/W4307112373, https://openalex.org/W4321016247, https://openalex.org/W4309905398, https://openalex.org/W4205420080, https://openalex.org/W3217453598, https://openalex.org/W4318562212, https://openalex.org/W2972838422, https://openalex.org/W2905017682, https://openalex.org/W3089550145, https://openalex.org/W4310193577, https://openalex.org/W3183992926, https://openalex.org/W2616247523, https://openalex.org/W4285275086, https://openalex.org/W4295137765, https://openalex.org/W2253429366, https://openalex.org/W2945839551, https://openalex.org/W2906302663, https://openalex.org/W6762718338, https://openalex.org/W4221100204, https://openalex.org/W4323530522, https://openalex.org/W2955425717, https://openalex.org/W3102564565, https://openalex.org/W4221068099, https://openalex.org/W4226144451 |
| referenced_works_count | 48 |
| abstract_inverted_index.a | 85, 91, 110, 179 |
| abstract_inverted_index.An | 26 |
| abstract_inverted_index.In | 166 |
| abstract_inverted_index.in | 118 |
| abstract_inverted_index.is | 20, 53, 84, 100, 243 |
| abstract_inverted_index.it | 52 |
| abstract_inverted_index.of | 4, 14, 17, 45, 59, 66, 105, 123, 146, 172, 181, 193, 215 |
| abstract_inverted_index.on | 33, 70, 102 |
| abstract_inverted_index.so | 51 |
| abstract_inverted_index.to | 9, 41, 55, 63, 168, 188, 202, 211, 230, 245 |
| abstract_inverted_index.Due | 62 |
| abstract_inverted_index.The | 88, 219, 235 |
| abstract_inverted_index.and | 24, 47, 131, 143, 226 |
| abstract_inverted_index.are | 2 |
| abstract_inverted_index.can | 38 |
| abstract_inverted_index.for | 22, 80 |
| abstract_inverted_index.new | 111 |
| abstract_inverted_index.one | 3 |
| abstract_inverted_index.the | 5, 15, 43, 57, 64, 103, 120, 136, 153, 157, 170, 173, 190, 194, 204, 213, 216, 240 |
| abstract_inverted_index.two | 128, 132 |
| abstract_inverted_index.was | 116, 125, 139, 200, 209 |
| abstract_inverted_index.data | 69 |
| abstract_inverted_index.help | 39 |
| abstract_inverted_index.most | 6 |
| abstract_inverted_index.out. | 186 |
| abstract_inverted_index.such | 60 |
| abstract_inverted_index.that | 239 |
| abstract_inverted_index.then | 144 |
| abstract_inverted_index.type | 16, 44 |
| abstract_inverted_index.used | 201, 229 |
| abstract_inverted_index.were | 150, 159, 184, 228 |
| abstract_inverted_index.with | 127 |
| abstract_inverted_index.(CNN) | 78 |
| abstract_inverted_index.(MRI) | 37 |
| abstract_inverted_index.Brain | 0 |
| abstract_inverted_index.EFF_D | 115, 137 |
| abstract_inverted_index.based | 32 |
| abstract_inverted_index.basic | 104 |
| abstract_inverted_index.brain | 18, 28, 71, 81, 93, 147, 175, 195 |
| abstract_inverted_index.dense | 133 |
| abstract_inverted_index.human | 10 |
| abstract_inverted_index.layer | 122 |
| abstract_inverted_index.model | 138, 242 |
| abstract_inverted_index.novel | 92 |
| abstract_inverted_index.order | 167 |
| abstract_inverted_index.other | 246 |
| abstract_inverted_index.study | 89 |
| abstract_inverted_index.their | 49 |
| abstract_inverted_index.tumor | 19, 29, 46, 94, 148, 176, 196 |
| abstract_inverted_index.using | 141, 152, 161 |
| abstract_inverted_index.vital | 54 |
| abstract_inverted_index.which | 99, 119 |
| abstract_inverted_index.(SVM). | 165 |
| abstract_inverted_index.EFF_D. | 155 |
| abstract_inverted_index.Neural | 76 |
| abstract_inverted_index.Vector | 163 |
| abstract_inverted_index.called | 97 |
| abstract_inverted_index.images | 149 |
| abstract_inverted_index.layers | 130 |
| abstract_inverted_index.model. | 108, 206, 218 |
| abstract_inverted_index.models | 79 |
| abstract_inverted_index.module | 114 |
| abstract_inverted_index.reduce | 48 |
| abstract_inverted_index.series | 180 |
| abstract_inverted_index.system | 31, 233 |
| abstract_inverted_index.tumors | 1, 82 |
| abstract_inverted_index.verify | 169, 212 |
| abstract_inverted_index.Imaging | 36 |
| abstract_inverted_index.Machine | 164 |
| abstract_inverted_index.Network | 77 |
| abstract_inverted_index.Support | 162 |
| abstract_inverted_index.carried | 185 |
| abstract_inverted_index.doctors | 40 |
| abstract_inverted_index.dropout | 129 |
| abstract_inverted_index.feature | 112 |
| abstract_inverted_index.health. | 11 |
| abstract_inverted_index.images, | 197 |
| abstract_inverted_index.improve | 56 |
| abstract_inverted_index.layers. | 134 |
| abstract_inverted_index.metrics | 221 |
| abstract_inverted_index.models. | 248 |
| abstract_inverted_index.recall, | 225 |
| abstract_inverted_index.results | 237 |
| abstract_inverted_index.system, | 96, 178 |
| abstract_inverted_index.tumors, | 72 |
| abstract_inverted_index.Accurate | 12 |
| abstract_inverted_index.Finally, | 156 |
| abstract_inverted_index.Firstly, | 109 |
| abstract_inverted_index.Grad-CAM | 198 |
| abstract_inverted_index.Magnetic | 34 |
| abstract_inverted_index.Softmax, | 142 |
| abstract_inverted_index.diseases | 8 |
| abstract_inverted_index.doctors. | 25 |
| abstract_inverted_index.evaluate | 231 |
| abstract_inverted_index.feasible | 86 |
| abstract_inverted_index.features | 145, 158, 192 |
| abstract_inverted_index.identify | 42 |
| abstract_inverted_index.indicate | 238 |
| abstract_inverted_index.patients | 23 |
| abstract_inverted_index.proposed | 174, 205, 217, 232, 241 |
| abstract_inverted_index.proposes | 90 |
| abstract_inverted_index.replaced | 126 |
| abstract_inverted_index.superior | 244 |
| abstract_inverted_index.systems. | 61 |
| abstract_inverted_index.F1-score, | 224 |
| abstract_inverted_index.Moreover, | 187 |
| abstract_inverted_index.Resonance | 35 |
| abstract_inverted_index.Secondly, | 135 |
| abstract_inverted_index.accuracy, | 223 |
| abstract_inverted_index.approach. | 87 |
| abstract_inverted_index.automated | 27 |
| abstract_inverted_index.challenge | 65 |
| abstract_inverted_index.conducted | 210 |
| abstract_inverted_index.developed | 101 |
| abstract_inverted_index.diagnosis | 30 |
| abstract_inverted_index.essential | 21 |
| abstract_inverted_index.extracted | 151, 191 |
| abstract_inverted_index.including | 222 |
| abstract_inverted_index.precision | 227 |
| abstract_inverted_index.proposed, | 117 |
| abstract_inverted_index.utilizing | 73 |
| abstract_inverted_index.visualize | 203 |
| abstract_inverted_index.workload, | 50 |
| abstract_inverted_index.EFF_D_SVM, | 98 |
| abstract_inverted_index.classified | 160 |
| abstract_inverted_index.collecting | 67 |
| abstract_inverted_index.evaluation | 220 |
| abstract_inverted_index.extraction | 113 |
| abstract_inverted_index.fine-tuned | 140, 154 |
| abstract_inverted_index.robustness | 214 |
| abstract_inverted_index.sufficient | 68 |
| abstract_inverted_index.technology | 199 |
| abstract_inverted_index.understand | 189 |
| abstract_inverted_index.comparative | 182 |
| abstract_inverted_index.experiments | 183 |
| abstract_inverted_index.performance | 58 |
| abstract_inverted_index.pre-trained | 74, 106 |
| abstract_inverted_index.threatening | 7 |
| abstract_inverted_index.Furthermore, | 207 |
| abstract_inverted_index.experimental | 236 |
| abstract_inverted_index.performance. | 234 |
| abstract_inverted_index.Convolutional | 75 |
| abstract_inverted_index.effectiveness | 171 |
| abstract_inverted_index.EfficientNetB0 | 107, 124 |
| abstract_inverted_index.classification | 83, 95, 121, 177 |
| abstract_inverted_index.identification | 13 |
| abstract_inverted_index.cross-validation | 208 |
| abstract_inverted_index.state-of-the-art | 247 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5042955432 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I4210134906 |
| citation_normalized_percentile.value | 0.82862122 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |