Effect of Electron Beam and Gamma Rays on Carbon Nanotube Yarn Structure Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.6084/m9.figshare.6152246
Individual carbon nanotubes (CNTs) exhibit excellent mechanical, electrical and thermal properties, leading to development of a new generation of advanced lightweight materials and spacecraft electronics substituting the electronics based on silicon. The direct assembly of CNTs into macroscopic fibers or sheets has been a way to overcome their dispersion and processing challenges. Because of a wide range of applications of this material, we investigate effectively the defects on CNT yarns structures created by electron beam and gamma sources and their impact on the morphology and mechanical properties. The irradiated samples with electron beam at doses of 400, 600 and 800 kGy had a decrease in the strength from 219.60 ± 18.90 MPa for pristine yarn to 108.86 ± 23.77, 153.15 ± 21.63, 170.50 ± 25.78 MPa, respectively. The sample irradiated with gamma in air at dose of 100 kGy had the strength increased slightly as compared with the pristine sample and an increase in the elasticity modulus from 8.79 ± 1.19 to 19.63 ± 2.02 GPa as compared to CNT pristine yarn. The quality of the CNT yarns that was gamma irradiated in air with absorbed dose of 100 kGy was not affected by the radiation process with improvement of 123% of the Young’s modulus.
Related Topics
- Type
- dataset
- Language
- en
- Landing Page
- https://doi.org/10.6084/m9.figshare.6152246
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4394148207
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4394148207Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.6084/m9.figshare.6152246Digital Object Identifier
- Title
-
Effect of Electron Beam and Gamma Rays on Carbon Nanotube Yarn StructureWork title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-01-01Full publication date if available
- Authors
-
Maria Cecilia Evora, Nitilaksha Hiremath, Xinyi Lu, Nam‐Goo Kang, Leonardo Gondim de Andrade e Silva, Gajanan Bhat, Jimmy W. MaysList of authors in order
- Landing page
-
https://doi.org/10.6084/m9.figshare.6152246Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.6084/m9.figshare.6152246Direct OA link when available
- Concepts
-
Carbon nanotube, Cathode ray, Beam (structure), Electron, Gamma ray, Materials science, Yarn, Nanotechnology, Physics, Composite material, Optics, Nuclear physicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4394148207 |
|---|---|
| doi | https://doi.org/10.6084/m9.figshare.6152246 |
| ids.doi | https://doi.org/10.6084/m9.figshare.6152246 |
| ids.openalex | https://openalex.org/W4394148207 |
| fwci | |
| type | dataset |
| title | Effect of Electron Beam and Gamma Rays on Carbon Nanotube Yarn Structure |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10074 |
| topics[0].field.id | https://openalex.org/fields/25 |
| topics[0].field.display_name | Materials Science |
| topics[0].score | 0.9053999781608582 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2505 |
| topics[0].subfield.display_name | Materials Chemistry |
| topics[0].display_name | Carbon Nanotubes in Composites |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C513720949 |
| concepts[0].level | 2 |
| concepts[0].score | 0.698349118232727 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1778729 |
| concepts[0].display_name | Carbon nanotube |
| concepts[1].id | https://openalex.org/C95312477 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6827231049537659 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q207340 |
| concepts[1].display_name | Cathode ray |
| concepts[2].id | https://openalex.org/C168834538 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5336405038833618 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3705329 |
| concepts[2].display_name | Beam (structure) |
| concepts[3].id | https://openalex.org/C147120987 |
| concepts[3].level | 2 |
| concepts[3].score | 0.49814581871032715 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2225 |
| concepts[3].display_name | Electron |
| concepts[4].id | https://openalex.org/C7910260 |
| concepts[4].level | 2 |
| concepts[4].score | 0.49773290753364563 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11523 |
| concepts[4].display_name | Gamma ray |
| concepts[5].id | https://openalex.org/C192562407 |
| concepts[5].level | 0 |
| concepts[5].score | 0.46914711594581604 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[5].display_name | Materials science |
| concepts[6].id | https://openalex.org/C2778787235 |
| concepts[6].level | 2 |
| concepts[6].score | 0.45348119735717773 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q49007 |
| concepts[6].display_name | Yarn |
| concepts[7].id | https://openalex.org/C171250308 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3467923104763031 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11468 |
| concepts[7].display_name | Nanotechnology |
| concepts[8].id | https://openalex.org/C121332964 |
| concepts[8].level | 0 |
| concepts[8].score | 0.3341895341873169 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[8].display_name | Physics |
| concepts[9].id | https://openalex.org/C159985019 |
| concepts[9].level | 1 |
| concepts[9].score | 0.31716328859329224 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[9].display_name | Composite material |
| concepts[10].id | https://openalex.org/C120665830 |
| concepts[10].level | 1 |
| concepts[10].score | 0.25437235832214355 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[10].display_name | Optics |
| concepts[11].id | https://openalex.org/C185544564 |
| concepts[11].level | 1 |
| concepts[11].score | 0.18639138340950012 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q81197 |
| concepts[11].display_name | Nuclear physics |
| keywords[0].id | https://openalex.org/keywords/carbon-nanotube |
| keywords[0].score | 0.698349118232727 |
| keywords[0].display_name | Carbon nanotube |
| keywords[1].id | https://openalex.org/keywords/cathode-ray |
| keywords[1].score | 0.6827231049537659 |
| keywords[1].display_name | Cathode ray |
| keywords[2].id | https://openalex.org/keywords/beam |
| keywords[2].score | 0.5336405038833618 |
| keywords[2].display_name | Beam (structure) |
| keywords[3].id | https://openalex.org/keywords/electron |
| keywords[3].score | 0.49814581871032715 |
| keywords[3].display_name | Electron |
| keywords[4].id | https://openalex.org/keywords/gamma-ray |
| keywords[4].score | 0.49773290753364563 |
| keywords[4].display_name | Gamma ray |
| keywords[5].id | https://openalex.org/keywords/materials-science |
| keywords[5].score | 0.46914711594581604 |
| keywords[5].display_name | Materials science |
| keywords[6].id | https://openalex.org/keywords/yarn |
| keywords[6].score | 0.45348119735717773 |
| keywords[6].display_name | Yarn |
| keywords[7].id | https://openalex.org/keywords/nanotechnology |
| keywords[7].score | 0.3467923104763031 |
| keywords[7].display_name | Nanotechnology |
| keywords[8].id | https://openalex.org/keywords/physics |
| keywords[8].score | 0.3341895341873169 |
| keywords[8].display_name | Physics |
| keywords[9].id | https://openalex.org/keywords/composite-material |
| keywords[9].score | 0.31716328859329224 |
| keywords[9].display_name | Composite material |
| keywords[10].id | https://openalex.org/keywords/optics |
| keywords[10].score | 0.25437235832214355 |
| keywords[10].display_name | Optics |
| keywords[11].id | https://openalex.org/keywords/nuclear-physics |
| keywords[11].score | 0.18639138340950012 |
| keywords[11].display_name | Nuclear physics |
| language | en |
| locations[0].id | doi:10.6084/m9.figshare.6152246 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | dataset |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.6084/m9.figshare.6152246 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5055971661 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7522-9246 |
| authorships[0].author.display_name | Maria Cecilia Evora |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Maria Cecilia Evora |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5018237258 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1583-1144 |
| authorships[1].author.display_name | Nitilaksha Hiremath |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Nitilaksha Hiremath |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5103686395 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Xinyi Lu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xinyi Lu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5007483208 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3492-9080 |
| authorships[3].author.display_name | Nam‐Goo Kang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Nam-Goo Kang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5032466796 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7968-2117 |
| authorships[4].author.display_name | Leonardo Gondim de Andrade e Silva |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Leonardo Gondin De Andrada E Silva |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5004936200 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4485-7586 |
| authorships[5].author.display_name | Gajanan Bhat |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Gajanan Bhat |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5011836609 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-4826-190X |
| authorships[6].author.display_name | Jimmy W. Mays |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Jimmy Mays |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.6084/m9.figshare.6152246 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Effect of Electron Beam and Gamma Rays on Carbon Nanotube Yarn Structure |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10074 |
| primary_topic.field.id | https://openalex.org/fields/25 |
| primary_topic.field.display_name | Materials Science |
| primary_topic.score | 0.9053999781608582 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2505 |
| primary_topic.subfield.display_name | Materials Chemistry |
| primary_topic.display_name | Carbon Nanotubes in Composites |
| related_works | https://openalex.org/W2078851640, https://openalex.org/W2381070915, https://openalex.org/W2352481835, https://openalex.org/W2392493391, https://openalex.org/W4200164335, https://openalex.org/W2109471562, https://openalex.org/W2090695246, https://openalex.org/W2378508949, https://openalex.org/W3199747891, https://openalex.org/W2142700871 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.6084/m9.figshare.6152246 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.6084/m9.figshare.6152246 |
| primary_location.id | doi:10.6084/m9.figshare.6152246 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | dataset |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.6084/m9.figshare.6152246 |
| publication_date | 2018-01-01 |
| publication_year | 2018 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 15, 43, 54, 102 |
| abstract_inverted_index.an | 151 |
| abstract_inverted_index.as | 144, 166 |
| abstract_inverted_index.at | 93, 134 |
| abstract_inverted_index.by | 72, 193 |
| abstract_inverted_index.in | 104, 132, 153, 182 |
| abstract_inverted_index.of | 14, 18, 34, 53, 57, 59, 95, 136, 174, 187, 199, 201 |
| abstract_inverted_index.on | 29, 67, 81 |
| abstract_inverted_index.or | 39 |
| abstract_inverted_index.to | 12, 45, 115, 161, 168 |
| abstract_inverted_index.we | 62 |
| abstract_inverted_index.± | 109, 117, 120, 123, 159, 163 |
| abstract_inverted_index.100 | 137, 188 |
| abstract_inverted_index.600 | 97 |
| abstract_inverted_index.800 | 99 |
| abstract_inverted_index.CNT | 68, 169, 176 |
| abstract_inverted_index.GPa | 165 |
| abstract_inverted_index.MPa | 111 |
| abstract_inverted_index.The | 31, 87, 127, 172 |
| abstract_inverted_index.air | 133, 183 |
| abstract_inverted_index.and | 8, 22, 49, 75, 78, 84, 98, 150 |
| abstract_inverted_index.for | 112 |
| abstract_inverted_index.had | 101, 139 |
| abstract_inverted_index.has | 41 |
| abstract_inverted_index.kGy | 100, 138, 189 |
| abstract_inverted_index.new | 16 |
| abstract_inverted_index.not | 191 |
| abstract_inverted_index.the | 26, 65, 82, 105, 140, 147, 154, 175, 194, 202 |
| abstract_inverted_index.was | 179, 190 |
| abstract_inverted_index.way | 44 |
| abstract_inverted_index.1.19 | 160 |
| abstract_inverted_index.123% | 200 |
| abstract_inverted_index.2.02 | 164 |
| abstract_inverted_index.400, | 96 |
| abstract_inverted_index.8.79 | 158 |
| abstract_inverted_index.CNTs | 35 |
| abstract_inverted_index.MPa, | 125 |
| abstract_inverted_index.beam | 74, 92 |
| abstract_inverted_index.been | 42 |
| abstract_inverted_index.dose | 135, 186 |
| abstract_inverted_index.from | 107, 157 |
| abstract_inverted_index.into | 36 |
| abstract_inverted_index.that | 178 |
| abstract_inverted_index.this | 60 |
| abstract_inverted_index.wide | 55 |
| abstract_inverted_index.with | 90, 130, 146, 184, 197 |
| abstract_inverted_index.yarn | 114 |
| abstract_inverted_index.18.90 | 110 |
| abstract_inverted_index.19.63 | 162 |
| abstract_inverted_index.25.78 | 124 |
| abstract_inverted_index.based | 28 |
| abstract_inverted_index.doses | 94 |
| abstract_inverted_index.gamma | 76, 131, 180 |
| abstract_inverted_index.range | 56 |
| abstract_inverted_index.their | 47, 79 |
| abstract_inverted_index.yarn. | 171 |
| abstract_inverted_index.yarns | 69, 177 |
| abstract_inverted_index.(CNTs) | 3 |
| abstract_inverted_index.108.86 | 116 |
| abstract_inverted_index.153.15 | 119 |
| abstract_inverted_index.170.50 | 122 |
| abstract_inverted_index.21.63, | 121 |
| abstract_inverted_index.219.60 | 108 |
| abstract_inverted_index.23.77, | 118 |
| abstract_inverted_index.carbon | 1 |
| abstract_inverted_index.direct | 32 |
| abstract_inverted_index.fibers | 38 |
| abstract_inverted_index.impact | 80 |
| abstract_inverted_index.sample | 128, 149 |
| abstract_inverted_index.sheets | 40 |
| abstract_inverted_index.Because | 52 |
| abstract_inverted_index.created | 71 |
| abstract_inverted_index.defects | 66 |
| abstract_inverted_index.exhibit | 4 |
| abstract_inverted_index.leading | 11 |
| abstract_inverted_index.modulus | 156 |
| abstract_inverted_index.process | 196 |
| abstract_inverted_index.quality | 173 |
| abstract_inverted_index.samples | 89 |
| abstract_inverted_index.sources | 77 |
| abstract_inverted_index.thermal | 9 |
| abstract_inverted_index.absorbed | 185 |
| abstract_inverted_index.advanced | 19 |
| abstract_inverted_index.affected | 192 |
| abstract_inverted_index.assembly | 33 |
| abstract_inverted_index.compared | 145, 167 |
| abstract_inverted_index.decrease | 103 |
| abstract_inverted_index.electron | 73, 91 |
| abstract_inverted_index.increase | 152 |
| abstract_inverted_index.modulus. | 204 |
| abstract_inverted_index.overcome | 46 |
| abstract_inverted_index.pristine | 113, 148, 170 |
| abstract_inverted_index.silicon. | 30 |
| abstract_inverted_index.slightly | 143 |
| abstract_inverted_index.strength | 106, 141 |
| abstract_inverted_index.Young’s | 203 |
| abstract_inverted_index.excellent | 5 |
| abstract_inverted_index.increased | 142 |
| abstract_inverted_index.material, | 61 |
| abstract_inverted_index.materials | 21 |
| abstract_inverted_index.nanotubes | 2 |
| abstract_inverted_index.radiation | 195 |
| abstract_inverted_index.Individual | 0 |
| abstract_inverted_index.dispersion | 48 |
| abstract_inverted_index.elasticity | 155 |
| abstract_inverted_index.electrical | 7 |
| abstract_inverted_index.generation | 17 |
| abstract_inverted_index.irradiated | 88, 129, 181 |
| abstract_inverted_index.mechanical | 85 |
| abstract_inverted_index.morphology | 83 |
| abstract_inverted_index.processing | 50 |
| abstract_inverted_index.spacecraft | 23 |
| abstract_inverted_index.structures | 70 |
| abstract_inverted_index.challenges. | 51 |
| abstract_inverted_index.development | 13 |
| abstract_inverted_index.effectively | 64 |
| abstract_inverted_index.electronics | 24, 27 |
| abstract_inverted_index.improvement | 198 |
| abstract_inverted_index.investigate | 63 |
| abstract_inverted_index.lightweight | 20 |
| abstract_inverted_index.macroscopic | 37 |
| abstract_inverted_index.mechanical, | 6 |
| abstract_inverted_index.properties, | 10 |
| abstract_inverted_index.properties. | 86 |
| abstract_inverted_index.applications | 58 |
| abstract_inverted_index.substituting | 25 |
| abstract_inverted_index.respectively. | 126 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |