Effect of Magnesium Phosphate Anodizing Electrolyte on Corrosion Resistance of Aluminum Alloy Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.21577/0103-5053.20250155
Anodizing is one of the methods to improve the corrosion resistance of aluminum alloy. Anodic oxide film was prepared on 2024 aluminum alloy by constant current anodic oxidation method. The selected electrolyte was tartrate-sulfuric-acid electrolyte which adding magnesium phosphate. Anodic oxide film was prepared by changing the anodic oxidation temperature, current, time and other process parameters. The morphology, elemental composition and phase of anodic oxide film before and after optimization were characterized by SEM (scanning electron microscopy), XRD (X-ray diffraction) and EDS (energy dispersive spectroscopy), the corrosion resistance of anodic oxide film was characterized by electrochemical test, salt spray experiment and immersion aging experiment. The results showed that the thickness of the film after adding magnesium phosphate was higher than that before adding magnesium phosphate. Electrochemical impedance spectroscopy showed that the impedance modulus at 0.01 Hz is one order of magnitude higher after adding magnesium phosphate than before adding magnesium, and two orders of magnitude higher than the bare substrate, indicating that the corrosion resistance was greatly enhanced. The anodic oxide film obtained by adding magnesium phosphate to the electrolyte greatly improved the corrosion resistance, which provide an effective idea for the corrosion protection of aluminum alloy
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.21577/0103-5053.20250155
- OA Status
- gold
- OpenAlex ID
- https://openalex.org/W4414963307
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414963307Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21577/0103-5053.20250155Digital Object Identifier
- Title
-
Effect of Magnesium Phosphate Anodizing Electrolyte on Corrosion Resistance of Aluminum AlloyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Min-Jen Deng, Jian Chen, Xu Zhou, Zhixiong Xie, Jie MinList of authors in order
- Landing page
-
https://doi.org/10.21577/0103-5053.20250155Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.21577/0103-5053.20250155Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414963307 |
|---|---|
| doi | https://doi.org/10.21577/0103-5053.20250155 |
| ids.doi | https://doi.org/10.21577/0103-5053.20250155 |
| ids.openalex | https://openalex.org/W4414963307 |
| fwci | 0.0 |
| type | article |
| title | Effect of Magnesium Phosphate Anodizing Electrolyte on Corrosion Resistance of Aluminum Alloy |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12340 |
| topics[0].field.id | https://openalex.org/fields/25 |
| topics[0].field.display_name | Materials Science |
| topics[0].score | 0.9871000051498413 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2505 |
| topics[0].subfield.display_name | Materials Chemistry |
| topics[0].display_name | Anodic Oxide Films and Nanostructures |
| topics[1].id | https://openalex.org/T11850 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9735999703407288 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Concrete Corrosion and Durability |
| topics[2].id | https://openalex.org/T13039 |
| topics[2].field.id | https://openalex.org/fields/25 |
| topics[2].field.display_name | Materials Science |
| topics[2].score | 0.951200008392334 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2505 |
| topics[2].subfield.display_name | Materials Chemistry |
| topics[2].display_name | Magnesium Oxide Properties and Applications |
| is_xpac | False |
| apc_list.value | 1450 |
| apc_list.currency | BRL |
| apc_list.value_usd | 275 |
| apc_paid.value | 1450 |
| apc_paid.currency | BRL |
| apc_paid.value_usd | 275 |
| language | en |
| locations[0].id | doi:10.21577/0103-5053.20250155 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S23544583 |
| locations[0].source.issn | 0103-5053, 1678-4790 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 0103-5053 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of the Brazilian Chemical Society |
| locations[0].source.host_organization | https://openalex.org/P4310312114 |
| locations[0].source.host_organization_name | Brazilian Chemical Society |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310312114 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of the Brazilian Chemical Society |
| locations[0].landing_page_url | https://doi.org/10.21577/0103-5053.20250155 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5040755170 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Min-Jen Deng |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mindi Deng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100709706 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4021-7127 |
| authorships[1].author.display_name | Jian Chen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jinzhi Chen |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5058153725 |
| authorships[2].author.orcid | https://orcid.org/0009-0008-9839-6942 |
| authorships[2].author.display_name | Xu Zhou |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xu Zhou |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5072467171 |
| authorships[3].author.orcid | https://orcid.org/0009-0007-9450-6967 |
| authorships[3].author.display_name | Zhixiong Xie |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhixiong Xie |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5108387103 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7349-5900 |
| authorships[4].author.display_name | Jie Min |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Jie Min |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.21577/0103-5053.20250155 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Effect of Magnesium Phosphate Anodizing Electrolyte on Corrosion Resistance of Aluminum Alloy |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12340 |
| primary_topic.field.id | https://openalex.org/fields/25 |
| primary_topic.field.display_name | Materials Science |
| primary_topic.score | 0.9871000051498413 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2505 |
| primary_topic.subfield.display_name | Materials Chemistry |
| primary_topic.display_name | Anodic Oxide Films and Nanostructures |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21577/0103-5053.20250155 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S23544583 |
| best_oa_location.source.issn | 0103-5053, 1678-4790 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 0103-5053 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of the Brazilian Chemical Society |
| best_oa_location.source.host_organization | https://openalex.org/P4310312114 |
| best_oa_location.source.host_organization_name | Brazilian Chemical Society |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310312114 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of the Brazilian Chemical Society |
| best_oa_location.landing_page_url | https://doi.org/10.21577/0103-5053.20250155 |
| primary_location.id | doi:10.21577/0103-5053.20250155 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S23544583 |
| primary_location.source.issn | 0103-5053, 1678-4790 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 0103-5053 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of the Brazilian Chemical Society |
| primary_location.source.host_organization | https://openalex.org/P4310312114 |
| primary_location.source.host_organization_name | Brazilian Chemical Society |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310312114 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of the Brazilian Chemical Society |
| primary_location.landing_page_url | https://doi.org/10.21577/0103-5053.20250155 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.Hz | 135 |
| abstract_inverted_index.an | 187 |
| abstract_inverted_index.at | 133 |
| abstract_inverted_index.by | 23, 44, 72, 94, 173 |
| abstract_inverted_index.is | 1, 136 |
| abstract_inverted_index.of | 3, 11, 62, 88, 110, 139, 153, 194 |
| abstract_inverted_index.on | 19 |
| abstract_inverted_index.to | 6, 177 |
| abstract_inverted_index.EDS | 81 |
| abstract_inverted_index.SEM | 73 |
| abstract_inverted_index.The | 29, 56, 104, 168 |
| abstract_inverted_index.XRD | 77 |
| abstract_inverted_index.and | 52, 60, 67, 80, 100, 150 |
| abstract_inverted_index.for | 190 |
| abstract_inverted_index.one | 2, 137 |
| abstract_inverted_index.the | 4, 8, 46, 85, 108, 111, 130, 157, 162, 178, 182, 191 |
| abstract_inverted_index.two | 151 |
| abstract_inverted_index.was | 17, 32, 42, 92, 117, 165 |
| abstract_inverted_index.0.01 | 134 |
| abstract_inverted_index.2024 | 20 |
| abstract_inverted_index.bare | 158 |
| abstract_inverted_index.film | 16, 41, 65, 91, 112, 171 |
| abstract_inverted_index.idea | 189 |
| abstract_inverted_index.salt | 97 |
| abstract_inverted_index.than | 119, 146, 156 |
| abstract_inverted_index.that | 107, 120, 129, 161 |
| abstract_inverted_index.time | 51 |
| abstract_inverted_index.were | 70 |
| abstract_inverted_index.after | 68, 113, 142 |
| abstract_inverted_index.aging | 102 |
| abstract_inverted_index.alloy | 22, 196 |
| abstract_inverted_index.order | 138 |
| abstract_inverted_index.other | 53 |
| abstract_inverted_index.oxide | 15, 40, 64, 90, 170 |
| abstract_inverted_index.phase | 61 |
| abstract_inverted_index.spray | 98 |
| abstract_inverted_index.test, | 96 |
| abstract_inverted_index.which | 35, 185 |
| abstract_inverted_index.(X-ray | 78 |
| abstract_inverted_index.Anodic | 14, 39 |
| abstract_inverted_index.adding | 36, 114, 122, 143, 148, 174 |
| abstract_inverted_index.alloy. | 13 |
| abstract_inverted_index.anodic | 26, 47, 63, 89, 169 |
| abstract_inverted_index.before | 66, 121, 147 |
| abstract_inverted_index.higher | 118, 141, 155 |
| abstract_inverted_index.orders | 152 |
| abstract_inverted_index.showed | 106, 128 |
| abstract_inverted_index.(energy | 82 |
| abstract_inverted_index.current | 25 |
| abstract_inverted_index.greatly | 166, 180 |
| abstract_inverted_index.improve | 7 |
| abstract_inverted_index.method. | 28 |
| abstract_inverted_index.methods | 5 |
| abstract_inverted_index.modulus | 132 |
| abstract_inverted_index.process | 54 |
| abstract_inverted_index.provide | 186 |
| abstract_inverted_index.results | 105 |
| abstract_inverted_index.aluminum | 12, 21, 195 |
| abstract_inverted_index.changing | 45 |
| abstract_inverted_index.constant | 24 |
| abstract_inverted_index.current, | 50 |
| abstract_inverted_index.electron | 75 |
| abstract_inverted_index.improved | 181 |
| abstract_inverted_index.obtained | 172 |
| abstract_inverted_index.prepared | 18, 43 |
| abstract_inverted_index.selected | 30 |
| abstract_inverted_index.(scanning | 74 |
| abstract_inverted_index.Anodizing | 0 |
| abstract_inverted_index.corrosion | 9, 86, 163, 183, 192 |
| abstract_inverted_index.effective | 188 |
| abstract_inverted_index.elemental | 58 |
| abstract_inverted_index.enhanced. | 167 |
| abstract_inverted_index.immersion | 101 |
| abstract_inverted_index.impedance | 126, 131 |
| abstract_inverted_index.magnesium | 37, 115, 123, 144, 175 |
| abstract_inverted_index.magnitude | 140, 154 |
| abstract_inverted_index.oxidation | 27, 48 |
| abstract_inverted_index.phosphate | 116, 145, 176 |
| abstract_inverted_index.thickness | 109 |
| abstract_inverted_index.dispersive | 83 |
| abstract_inverted_index.experiment | 99 |
| abstract_inverted_index.indicating | 160 |
| abstract_inverted_index.magnesium, | 149 |
| abstract_inverted_index.phosphate. | 38, 124 |
| abstract_inverted_index.protection | 193 |
| abstract_inverted_index.resistance | 10, 87, 164 |
| abstract_inverted_index.substrate, | 159 |
| abstract_inverted_index.composition | 59 |
| abstract_inverted_index.electrolyte | 31, 34, 179 |
| abstract_inverted_index.experiment. | 103 |
| abstract_inverted_index.morphology, | 57 |
| abstract_inverted_index.parameters. | 55 |
| abstract_inverted_index.resistance, | 184 |
| abstract_inverted_index.diffraction) | 79 |
| abstract_inverted_index.microscopy), | 76 |
| abstract_inverted_index.optimization | 69 |
| abstract_inverted_index.spectroscopy | 127 |
| abstract_inverted_index.temperature, | 49 |
| abstract_inverted_index.characterized | 71, 93 |
| abstract_inverted_index.spectroscopy), | 84 |
| abstract_inverted_index.Electrochemical | 125 |
| abstract_inverted_index.electrochemical | 95 |
| abstract_inverted_index.tartrate-sulfuric-acid | 33 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.46810871 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |