Effective and efficient neural networks for spike inference from in vivo calcium imaging Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1016/j.crmeth.2023.100462
Calcium imaging provides advantages in monitoring large populations of neuronal activities simultaneously. However, it lacks the signal quality provided by neural spike recording in traditional electrophysiology. To address this issue, we developed a supervised data-driven approach to extract spike information from calcium signals. We propose the ENS2 (effective and efficient neural networks for spike inference from calcium signals) system for spike-rate and spike-event predictions using ΔF/F0 calcium inputs based on a U-Net deep neural network. When testing on a large, ground-truth public database, it consistently outperformed state-of-the-art algorithms in both spike-rate and spike-event predictions with reduced computational load. We further demonstrated that ENS2 can be applied to analyses of orientation selectivity in primary visual cortex neurons. We conclude that it would be a versatile inference system that may benefit diverse neuroscience studies.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.crmeth.2023.100462
- OA Status
- gold
- Cited By
- 7
- References
- 92
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4366824614
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4366824614Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.crmeth.2023.100462Digital Object Identifier
- Title
-
Effective and efficient neural networks for spike inference from in vivo calcium imagingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-04-24Full publication date if available
- Authors
-
Zhanhong Zhou, Hei Matthew Yip, Katya Tsimring, Mriganka Sur, Jacque Pak Kan Ip, Chung TinList of authors in order
- Landing page
-
https://doi.org/10.1016/j.crmeth.2023.100462Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.crmeth.2023.100462Direct OA link when available
- Concepts
-
Spike (software development), Inference, Calcium imaging, Computer science, Artificial neural network, Artificial intelligence, Biological neural network, Pattern recognition (psychology), Neural coding, Event (particle physics), Machine learning, Neuroscience, Calcium, Biology, Chemistry, Physics, Software engineering, Organic chemistry, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 2, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
92Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4366824614 |
|---|---|
| doi | https://doi.org/10.1016/j.crmeth.2023.100462 |
| ids.doi | https://doi.org/10.1016/j.crmeth.2023.100462 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/37323579 |
| ids.openalex | https://openalex.org/W4366824614 |
| fwci | 1.58263651 |
| mesh[0].qualifier_ui | Q000502 |
| mesh[0].descriptor_ui | D000200 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | physiology |
| mesh[0].descriptor_name | Action Potentials |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D008959 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Models, Neurological |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D016571 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Neural Networks, Computer |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D000465 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Algorithms |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D002136 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Calcium, Dietary |
| mesh[5].qualifier_ui | Q000502 |
| mesh[5].descriptor_ui | D000200 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | physiology |
| mesh[5].descriptor_name | Action Potentials |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D008959 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Models, Neurological |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D016571 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Neural Networks, Computer |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D000465 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Algorithms |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D002136 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Calcium, Dietary |
| type | article |
| title | Effective and efficient neural networks for spike inference from in vivo calcium imaging |
| biblio.issue | 5 |
| biblio.volume | 3 |
| biblio.last_page | 100462 |
| biblio.first_page | 100462 |
| topics[0].id | https://openalex.org/T10581 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | Neural dynamics and brain function |
| topics[1].id | https://openalex.org/T10077 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9993000030517578 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2804 |
| topics[1].subfield.display_name | Cellular and Molecular Neuroscience |
| topics[1].display_name | Neuroscience and Neuropharmacology Research |
| topics[2].id | https://openalex.org/T11601 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9990000128746033 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2804 |
| topics[2].subfield.display_name | Cellular and Molecular Neuroscience |
| topics[2].display_name | Neuroscience and Neural Engineering |
| is_xpac | False |
| apc_list.value | 5200 |
| apc_list.currency | USD |
| apc_list.value_usd | 5200 |
| apc_paid.value | 5200 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 5200 |
| concepts[0].id | https://openalex.org/C2781390188 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9024701118469238 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q25203449 |
| concepts[0].display_name | Spike (software development) |
| concepts[1].id | https://openalex.org/C2776214188 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7399949431419373 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[1].display_name | Inference |
| concepts[2].id | https://openalex.org/C2776032975 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6658382415771484 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5018833 |
| concepts[2].display_name | Calcium imaging |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6649271249771118 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C50644808 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5947763323783875 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[4].display_name | Artificial neural network |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5582486987113953 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C118403218 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4827503561973572 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q43283 |
| concepts[6].display_name | Biological neural network |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4350776672363281 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C77637269 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4291665256023407 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7002051 |
| concepts[8].display_name | Neural coding |
| concepts[9].id | https://openalex.org/C2779662365 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4155060052871704 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5416694 |
| concepts[9].display_name | Event (particle physics) |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.40772026777267456 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C169760540 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3881794512271881 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[11].display_name | Neuroscience |
| concepts[12].id | https://openalex.org/C519063684 |
| concepts[12].level | 2 |
| concepts[12].score | 0.35966217517852783 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q706 |
| concepts[12].display_name | Calcium |
| concepts[13].id | https://openalex.org/C86803240 |
| concepts[13].level | 0 |
| concepts[13].score | 0.1322421133518219 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[13].display_name | Biology |
| concepts[14].id | https://openalex.org/C185592680 |
| concepts[14].level | 0 |
| concepts[14].score | 0.13179299235343933 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[14].display_name | Chemistry |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.06330397725105286 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| concepts[16].id | https://openalex.org/C115903868 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q80993 |
| concepts[16].display_name | Software engineering |
| concepts[17].id | https://openalex.org/C178790620 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[17].display_name | Organic chemistry |
| concepts[18].id | https://openalex.org/C62520636 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[18].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/spike |
| keywords[0].score | 0.9024701118469238 |
| keywords[0].display_name | Spike (software development) |
| keywords[1].id | https://openalex.org/keywords/inference |
| keywords[1].score | 0.7399949431419373 |
| keywords[1].display_name | Inference |
| keywords[2].id | https://openalex.org/keywords/calcium-imaging |
| keywords[2].score | 0.6658382415771484 |
| keywords[2].display_name | Calcium imaging |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6649271249771118 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[4].score | 0.5947763323783875 |
| keywords[4].display_name | Artificial neural network |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5582486987113953 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/biological-neural-network |
| keywords[6].score | 0.4827503561973572 |
| keywords[6].display_name | Biological neural network |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.4350776672363281 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/neural-coding |
| keywords[8].score | 0.4291665256023407 |
| keywords[8].display_name | Neural coding |
| keywords[9].id | https://openalex.org/keywords/event |
| keywords[9].score | 0.4155060052871704 |
| keywords[9].display_name | Event (particle physics) |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.40772026777267456 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/neuroscience |
| keywords[11].score | 0.3881794512271881 |
| keywords[11].display_name | Neuroscience |
| keywords[12].id | https://openalex.org/keywords/calcium |
| keywords[12].score | 0.35966217517852783 |
| keywords[12].display_name | Calcium |
| keywords[13].id | https://openalex.org/keywords/biology |
| keywords[13].score | 0.1322421133518219 |
| keywords[13].display_name | Biology |
| keywords[14].id | https://openalex.org/keywords/chemistry |
| keywords[14].score | 0.13179299235343933 |
| keywords[14].display_name | Chemistry |
| keywords[15].id | https://openalex.org/keywords/physics |
| keywords[15].score | 0.06330397725105286 |
| keywords[15].display_name | Physics |
| language | en |
| locations[0].id | doi:10.1016/j.crmeth.2023.100462 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210214705 |
| locations[0].source.issn | 2667-2375 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2667-2375 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Cell Reports Methods |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Cell Reports Methods |
| locations[0].landing_page_url | https://doi.org/10.1016/j.crmeth.2023.100462 |
| locations[1].id | pmid:37323579 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Cell reports methods |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/37323579 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10261900 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by-nc-nd |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10261900/pdf/main.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Cell Rep Methods |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10261900 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5054751631 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9361-9712 |
| authorships[0].author.display_name | Zhanhong Zhou |
| authorships[0].countries | HK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I168719708 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China |
| authorships[0].institutions[0].id | https://openalex.org/I168719708 |
| authorships[0].institutions[0].ror | https://ror.org/03q8dnn23 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I168719708 |
| authorships[0].institutions[0].country_code | HK |
| authorships[0].institutions[0].display_name | City University of Hong Kong |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhanhong Zhou |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China |
| authorships[1].author.id | https://openalex.org/A5071865034 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5203-1138 |
| authorships[1].author.display_name | Hei Matthew Yip |
| authorships[1].countries | HK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I177725633 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China |
| authorships[1].institutions[0].id | https://openalex.org/I177725633 |
| authorships[1].institutions[0].ror | https://ror.org/00t33hh48 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I177725633 |
| authorships[1].institutions[0].country_code | HK |
| authorships[1].institutions[0].display_name | Chinese University of Hong Kong |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hei Matthew Yip |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China |
| authorships[2].author.id | https://openalex.org/A5011762091 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Katya Tsimring |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I63966007 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA |
| authorships[2].institutions[0].id | https://openalex.org/I63966007 |
| authorships[2].institutions[0].ror | https://ror.org/042nb2s44 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I63966007 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Massachusetts Institute of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Katya Tsimring |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA |
| authorships[3].author.id | https://openalex.org/A5024300858 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2442-5671 |
| authorships[3].author.display_name | Mriganka Sur |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I63966007 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA |
| authorships[3].institutions[0].id | https://openalex.org/I63966007 |
| authorships[3].institutions[0].ror | https://ror.org/042nb2s44 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I63966007 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Massachusetts Institute of Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Mriganka Sur |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA |
| authorships[4].author.id | https://openalex.org/A5081243354 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4545-8261 |
| authorships[4].author.display_name | Jacque Pak Kan Ip |
| authorships[4].countries | HK |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I177725633 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China |
| authorships[4].institutions[0].id | https://openalex.org/I177725633 |
| authorships[4].institutions[0].ror | https://ror.org/00t33hh48 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I177725633 |
| authorships[4].institutions[0].country_code | HK |
| authorships[4].institutions[0].display_name | Chinese University of Hong Kong |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jacque Pak Kan Ip |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China |
| authorships[5].author.id | https://openalex.org/A5049574955 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5337-2578 |
| authorships[5].author.display_name | Chung Tin |
| authorships[5].countries | HK |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I168719708 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China |
| authorships[5].institutions[0].id | https://openalex.org/I168719708 |
| authorships[5].institutions[0].ror | https://ror.org/03q8dnn23 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I168719708 |
| authorships[5].institutions[0].country_code | HK |
| authorships[5].institutions[0].display_name | City University of Hong Kong |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Chung Tin |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.crmeth.2023.100462 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-04-25T00:00:00 |
| display_name | Effective and efficient neural networks for spike inference from in vivo calcium imaging |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10581 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | Neural dynamics and brain function |
| related_works | https://openalex.org/W3035016037, https://openalex.org/W4382541474, https://openalex.org/W3083658372, https://openalex.org/W4366824614, https://openalex.org/W2052139633, https://openalex.org/W2016051734, https://openalex.org/W2047763938, https://openalex.org/W2113207889, https://openalex.org/W2786507638, https://openalex.org/W2955703866 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1016/j.crmeth.2023.100462 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210214705 |
| best_oa_location.source.issn | 2667-2375 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2667-2375 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Cell Reports Methods |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Cell Reports Methods |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.crmeth.2023.100462 |
| primary_location.id | doi:10.1016/j.crmeth.2023.100462 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210214705 |
| primary_location.source.issn | 2667-2375 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2667-2375 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Cell Reports Methods |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Cell Reports Methods |
| primary_location.landing_page_url | https://doi.org/10.1016/j.crmeth.2023.100462 |
| publication_date | 2023-04-24 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W1971880089, https://openalex.org/W2009667219, https://openalex.org/W1987345946, https://openalex.org/W2007495909, https://openalex.org/W2994737554, https://openalex.org/W2045914027, https://openalex.org/W2124196462, https://openalex.org/W1906788546, https://openalex.org/W2597662796, https://openalex.org/W2605712282, https://openalex.org/W2595087345, https://openalex.org/W2808882667, https://openalex.org/W2080092859, https://openalex.org/W2171332611, https://openalex.org/W2077892070, https://openalex.org/W2291957660, https://openalex.org/W2650870900, https://openalex.org/W2061464631, https://openalex.org/W2046031057, https://openalex.org/W2394641095, https://openalex.org/W2062619493, https://openalex.org/W1889678891, https://openalex.org/W2012491533, https://openalex.org/W1994955957, https://openalex.org/W2057881395, https://openalex.org/W2067474937, https://openalex.org/W2014381155, https://openalex.org/W6644138799, https://openalex.org/W2502163955, https://openalex.org/W6729994153, https://openalex.org/W2231009150, https://openalex.org/W2595012769, https://openalex.org/W2885162916, https://openalex.org/W2963111108, https://openalex.org/W2303815889, https://openalex.org/W2953214390, https://openalex.org/W3094182702, https://openalex.org/W3191325495, https://openalex.org/W3135307022, https://openalex.org/W2159856365, https://openalex.org/W2935103042, https://openalex.org/W2802900481, https://openalex.org/W3023605195, https://openalex.org/W3015378265, https://openalex.org/W2684229413, https://openalex.org/W6639824700, https://openalex.org/W2112796928, https://openalex.org/W6724804524, https://openalex.org/W6674330103, https://openalex.org/W2111562869, https://openalex.org/W6631190155, https://openalex.org/W6720166029, https://openalex.org/W2805271873, https://openalex.org/W6645567019, https://openalex.org/W2940762142, https://openalex.org/W2903604081, https://openalex.org/W6784983355, https://openalex.org/W6739901393, https://openalex.org/W2279259774, https://openalex.org/W6766260822, https://openalex.org/W6779823529, https://openalex.org/W6799025473, https://openalex.org/W6841916772, https://openalex.org/W2913083484, https://openalex.org/W6785632797, https://openalex.org/W2803107452, https://openalex.org/W6948448507, https://openalex.org/W2103655875, https://openalex.org/W1843946745, https://openalex.org/W1974929462, https://openalex.org/W1975212040, https://openalex.org/W3097997827, https://openalex.org/W3212867051, https://openalex.org/W1522301498, https://openalex.org/W3105037898, https://openalex.org/W3186431206, https://openalex.org/W2469581795, https://openalex.org/W1901129140, https://openalex.org/W3036167779, https://openalex.org/W3154637644, https://openalex.org/W2555612184, https://openalex.org/W4320013936, https://openalex.org/W3195625084, https://openalex.org/W1997511216, https://openalex.org/W2015426350, https://openalex.org/W2502312327, https://openalex.org/W3133698431, https://openalex.org/W2095705004, https://openalex.org/W1981507482, https://openalex.org/W2964621620, https://openalex.org/W4292753694, https://openalex.org/W4385245566 |
| referenced_works_count | 92 |
| abstract_inverted_index.a | 32, 70, 78, 122 |
| abstract_inverted_index.To | 26 |
| abstract_inverted_index.We | 43, 98, 116 |
| abstract_inverted_index.be | 104, 121 |
| abstract_inverted_index.by | 19 |
| abstract_inverted_index.in | 4, 23, 88, 111 |
| abstract_inverted_index.it | 13, 83, 119 |
| abstract_inverted_index.of | 8, 108 |
| abstract_inverted_index.on | 69, 77 |
| abstract_inverted_index.to | 36, 106 |
| abstract_inverted_index.we | 30 |
| abstract_inverted_index.and | 48, 61, 91 |
| abstract_inverted_index.can | 103 |
| abstract_inverted_index.for | 52, 59 |
| abstract_inverted_index.may | 127 |
| abstract_inverted_index.the | 15, 45 |
| abstract_inverted_index.When | 75 |
| abstract_inverted_index.both | 89 |
| abstract_inverted_index.deep | 72 |
| abstract_inverted_index.from | 40, 55 |
| abstract_inverted_index.that | 101, 118, 126 |
| abstract_inverted_index.this | 28 |
| abstract_inverted_index.with | 94 |
| abstract_inverted_index.U-Net | 71 |
| abstract_inverted_index.based | 68 |
| abstract_inverted_index.lacks | 14 |
| abstract_inverted_index.large | 6 |
| abstract_inverted_index.load. | 97 |
| abstract_inverted_index.spike | 21, 38, 53 |
| abstract_inverted_index.using | 64 |
| abstract_inverted_index.would | 120 |
| abstract_inverted_index.cortex | 114 |
| abstract_inverted_index.inputs | 67 |
| abstract_inverted_index.issue, | 29 |
| abstract_inverted_index.large, | 79 |
| abstract_inverted_index.neural | 20, 50, 73 |
| abstract_inverted_index.public | 81 |
| abstract_inverted_index.signal | 16 |
| abstract_inverted_index.system | 58, 125 |
| abstract_inverted_index.visual | 113 |
| abstract_inverted_index.Calcium | 0 |
| abstract_inverted_index.address | 27 |
| abstract_inverted_index.applied | 105 |
| abstract_inverted_index.benefit | 128 |
| abstract_inverted_index.calcium | 41, 56, 66 |
| abstract_inverted_index.diverse | 129 |
| abstract_inverted_index.extract | 37 |
| abstract_inverted_index.further | 99 |
| abstract_inverted_index.imaging | 1 |
| abstract_inverted_index.primary | 112 |
| abstract_inverted_index.propose | 44 |
| abstract_inverted_index.quality | 17 |
| abstract_inverted_index.reduced | 95 |
| abstract_inverted_index.testing | 76 |
| abstract_inverted_index.However, | 12 |
| abstract_inverted_index.analyses | 107 |
| abstract_inverted_index.approach | 35 |
| abstract_inverted_index.conclude | 117 |
| abstract_inverted_index.network. | 74 |
| abstract_inverted_index.networks | 51 |
| abstract_inverted_index.neuronal | 9 |
| abstract_inverted_index.neurons. | 115 |
| abstract_inverted_index.provided | 18 |
| abstract_inverted_index.provides | 2 |
| abstract_inverted_index.signals) | 57 |
| abstract_inverted_index.signals. | 42 |
| abstract_inverted_index.studies. | 131 |
| abstract_inverted_index.database, | 82 |
| abstract_inverted_index.developed | 31 |
| abstract_inverted_index.efficient | 49 |
| abstract_inverted_index.inference | 54, 124 |
| abstract_inverted_index.recording | 22 |
| abstract_inverted_index.versatile | 123 |
| abstract_inverted_index.(effective | 47 |
| abstract_inverted_index.activities | 10 |
| abstract_inverted_index.advantages | 3 |
| abstract_inverted_index.algorithms | 87 |
| abstract_inverted_index.monitoring | 5 |
| abstract_inverted_index.spike-rate | 60, 90 |
| abstract_inverted_index.supervised | 33 |
| abstract_inverted_index.data-driven | 34 |
| abstract_inverted_index.information | 39 |
| abstract_inverted_index.orientation | 109 |
| abstract_inverted_index.populations | 7 |
| abstract_inverted_index.predictions | 63, 93 |
| abstract_inverted_index.selectivity | 110 |
| abstract_inverted_index.spike-event | 62, 92 |
| abstract_inverted_index.traditional | 24 |
| abstract_inverted_index.consistently | 84 |
| abstract_inverted_index.demonstrated | 100 |
| abstract_inverted_index.ground-truth | 80 |
| abstract_inverted_index.neuroscience | 130 |
| abstract_inverted_index.outperformed | 85 |
| abstract_inverted_index.computational | 96 |
| abstract_inverted_index.ENS<sup>2</sup> | 46, 102 |
| abstract_inverted_index.simultaneously. | 11 |
| abstract_inverted_index.state-of-the-art | 86 |
| abstract_inverted_index.electrophysiology. | 25 |
| abstract_inverted_index.<i>ΔF</i>/<i>F</i><sub><i>0</i></sub> | 65 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5049574955, https://openalex.org/A5081243354 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I168719708, https://openalex.org/I177725633 |
| citation_normalized_percentile.value | 0.78211716 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |