Effective expression analysis using gene interaction matrices and convolutional neural networks Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1101/2021.09.07.459284
Artificial intelligence recently experienced a renaissance with the advancement of convolutional neural networks (CNNs). CNNs require spatially meaningful matrices ( e.g ., image data) with recurring patterns, limiting its applicability to high-throughput omics data. We present GIM, a simple, CNN-ready framework for omics data to detect both individual and network-level entities of biological importance. Using gene expression data, we show that GIM-CNNs can outperform comparable neural networks in performance and their design facilitates network-level interpretability. GIM-CNNs provide a means to discover novel disease-relevant factors beyond individual genes and their expression, factors that are likely missed by standard differential gene expression approaches.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2021.09.07.459284
- https://www.biorxiv.org/content/biorxiv/early/2021/09/07/2021.09.07.459284.full.pdf
- OA Status
- green
- References
- 19
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3197373123
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3197373123Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2021.09.07.459284Digital Object Identifier
- Title
-
Effective expression analysis using gene interaction matrices and convolutional neural networksWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-09-07Full publication date if available
- Authors
-
Arvind Pillai, Piotr Grabowski, Bino JohnList of authors in order
- Landing page
-
https://doi.org/10.1101/2021.09.07.459284Publisher landing page
- PDF URL
-
https://www.biorxiv.org/content/biorxiv/early/2021/09/07/2021.09.07.459284.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.biorxiv.org/content/biorxiv/early/2021/09/07/2021.09.07.459284.full.pdfDirect OA link when available
- Concepts
-
Interpretability, Convolutional neural network, Computer science, Artificial intelligence, Expression (computer science), Machine learning, Limiting, Artificial neural network, Data mining, Computational biology, Pattern recognition (psychology), Biology, Mechanical engineering, Programming language, EngineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
19Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3197373123 |
|---|---|
| doi | https://doi.org/10.1101/2021.09.07.459284 |
| ids.doi | https://doi.org/10.1101/2021.09.07.459284 |
| ids.mag | 3197373123 |
| ids.openalex | https://openalex.org/W3197373123 |
| fwci | 0.0 |
| type | preprint |
| title | Effective expression analysis using gene interaction matrices and convolutional neural networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10885 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Gene expression and cancer classification |
| topics[1].id | https://openalex.org/T10887 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9997000098228455 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Bioinformatics and Genomic Networks |
| topics[2].id | https://openalex.org/T11289 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9983000159263611 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Single-cell and spatial transcriptomics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2781067378 |
| concepts[0].level | 2 |
| concepts[0].score | 0.92875075340271 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17027399 |
| concepts[0].display_name | Interpretability |
| concepts[1].id | https://openalex.org/C81363708 |
| concepts[1].level | 2 |
| concepts[1].score | 0.859932541847229 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[1].display_name | Convolutional neural network |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6730873584747314 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6048275232315063 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C90559484 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5611281394958496 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q778379 |
| concepts[4].display_name | Expression (computer science) |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5007612705230713 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C188198153 |
| concepts[6].level | 2 |
| concepts[6].score | 0.49811339378356934 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1613840 |
| concepts[6].display_name | Limiting |
| concepts[7].id | https://openalex.org/C50644808 |
| concepts[7].level | 2 |
| concepts[7].score | 0.44624441862106323 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[7].display_name | Artificial neural network |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4253574311733246 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C70721500 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3643902838230133 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[9].display_name | Computational biology |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3206351399421692 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C86803240 |
| concepts[11].level | 0 |
| concepts[11].score | 0.1526709496974945 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[11].display_name | Biology |
| concepts[12].id | https://openalex.org/C78519656 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[12].display_name | Mechanical engineering |
| concepts[13].id | https://openalex.org/C199360897 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[13].display_name | Programming language |
| concepts[14].id | https://openalex.org/C127413603 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[14].display_name | Engineering |
| keywords[0].id | https://openalex.org/keywords/interpretability |
| keywords[0].score | 0.92875075340271 |
| keywords[0].display_name | Interpretability |
| keywords[1].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[1].score | 0.859932541847229 |
| keywords[1].display_name | Convolutional neural network |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6730873584747314 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6048275232315063 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/expression |
| keywords[4].score | 0.5611281394958496 |
| keywords[4].display_name | Expression (computer science) |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.5007612705230713 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/limiting |
| keywords[6].score | 0.49811339378356934 |
| keywords[6].display_name | Limiting |
| keywords[7].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[7].score | 0.44624441862106323 |
| keywords[7].display_name | Artificial neural network |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.4253574311733246 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/computational-biology |
| keywords[9].score | 0.3643902838230133 |
| keywords[9].display_name | Computational biology |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.3206351399421692 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/biology |
| keywords[11].score | 0.1526709496974945 |
| keywords[11].display_name | Biology |
| language | en |
| locations[0].id | doi:10.1101/2021.09.07.459284 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | https://www.biorxiv.org/content/biorxiv/early/2021/09/07/2021.09.07.459284.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2021.09.07.459284 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5004965804 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2489-1130 |
| authorships[0].author.display_name | Arvind Pillai |
| authorships[0].countries | KR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210092243 |
| authorships[0].affiliations[0].raw_affiliation_string | Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Waltham, US |
| authorships[0].institutions[0].id | https://openalex.org/I4210092243 |
| authorships[0].institutions[0].ror | https://ror.org/00h1xaa75 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I105036370, https://openalex.org/I4210092243 |
| authorships[0].institutions[0].country_code | KR |
| authorships[0].institutions[0].display_name | AstraZeneca (South Korea) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Arvind Pillai |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Waltham, US |
| authorships[1].author.id | https://openalex.org/A5050671879 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9501-6192 |
| authorships[1].author.display_name | Piotr Grabowski |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I105036370 |
| authorships[1].affiliations[0].raw_affiliation_string | Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK |
| authorships[1].institutions[0].id | https://openalex.org/I105036370 |
| authorships[1].institutions[0].ror | https://ror.org/04r9x1a08 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I105036370 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | AstraZeneca (United Kingdom) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Piotr Grabowski |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK |
| authorships[2].author.id | https://openalex.org/A5113997880 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Bino John |
| authorships[2].countries | KR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210092243 |
| authorships[2].affiliations[0].raw_affiliation_string | Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Waltham, US |
| authorships[2].institutions[0].id | https://openalex.org/I4210092243 |
| authorships[2].institutions[0].ror | https://ror.org/00h1xaa75 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I105036370, https://openalex.org/I4210092243 |
| authorships[2].institutions[0].country_code | KR |
| authorships[2].institutions[0].display_name | AstraZeneca (South Korea) |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Bino John |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Waltham, US |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.biorxiv.org/content/biorxiv/early/2021/09/07/2021.09.07.459284.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Effective expression analysis using gene interaction matrices and convolutional neural networks |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10885 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Gene expression and cancer classification |
| related_works | https://openalex.org/W2905433371, https://openalex.org/W4361193272, https://openalex.org/W4310278675, https://openalex.org/W2806259446, https://openalex.org/W2963326959, https://openalex.org/W4247136043, https://openalex.org/W4312407344, https://openalex.org/W4384115502, https://openalex.org/W4226258012, https://openalex.org/W3034296850 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2021.09.07.459284 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2021/09/07/2021.09.07.459284.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2021.09.07.459284 |
| primary_location.id | doi:10.1101/2021.09.07.459284 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2021/09/07/2021.09.07.459284.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2021.09.07.459284 |
| publication_date | 2021-09-07 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2919115771, https://openalex.org/W2752517284, https://openalex.org/W2917576966, https://openalex.org/W2996140569, https://openalex.org/W2949241335, https://openalex.org/W2158485828, https://openalex.org/W2099536383, https://openalex.org/W2999309192, https://openalex.org/W2343891185, https://openalex.org/W2793616572, https://openalex.org/W1984723140, https://openalex.org/W2061740460, https://openalex.org/W2986506715, https://openalex.org/W2194775991, https://openalex.org/W3101294892, https://openalex.org/W3097530643, https://openalex.org/W2964962196, https://openalex.org/W3025769762, https://openalex.org/W3014321973 |
| referenced_works_count | 19 |
| abstract_inverted_index.( | 20 |
| abstract_inverted_index.a | 5, 38, 78 |
| abstract_inverted_index.., | 22 |
| abstract_inverted_index.We | 35 |
| abstract_inverted_index.by | 96 |
| abstract_inverted_index.in | 68 |
| abstract_inverted_index.of | 10, 52 |
| abstract_inverted_index.to | 31, 45, 80 |
| abstract_inverted_index.we | 59 |
| abstract_inverted_index.and | 49, 70, 88 |
| abstract_inverted_index.are | 93 |
| abstract_inverted_index.can | 63 |
| abstract_inverted_index.e.g | 21 |
| abstract_inverted_index.for | 42 |
| abstract_inverted_index.its | 29 |
| abstract_inverted_index.the | 8 |
| abstract_inverted_index.CNNs | 15 |
| abstract_inverted_index.GIM, | 37 |
| abstract_inverted_index.both | 47 |
| abstract_inverted_index.data | 44 |
| abstract_inverted_index.gene | 56, 99 |
| abstract_inverted_index.show | 60 |
| abstract_inverted_index.that | 61, 92 |
| abstract_inverted_index.with | 7, 25 |
| abstract_inverted_index.Using | 55 |
| abstract_inverted_index.data) | 24 |
| abstract_inverted_index.data, | 58 |
| abstract_inverted_index.data. | 34 |
| abstract_inverted_index.genes | 87 |
| abstract_inverted_index.image | 23 |
| abstract_inverted_index.means | 79 |
| abstract_inverted_index.novel | 82 |
| abstract_inverted_index.omics | 33, 43 |
| abstract_inverted_index.their | 71, 89 |
| abstract_inverted_index.beyond | 85 |
| abstract_inverted_index.design | 72 |
| abstract_inverted_index.detect | 46 |
| abstract_inverted_index.likely | 94 |
| abstract_inverted_index.missed | 95 |
| abstract_inverted_index.neural | 12, 66 |
| abstract_inverted_index.(CNNs). | 14 |
| abstract_inverted_index.factors | 84, 91 |
| abstract_inverted_index.present | 36 |
| abstract_inverted_index.provide | 77 |
| abstract_inverted_index.require | 16 |
| abstract_inverted_index.simple, | 39 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.GIM-CNNs | 62, 76 |
| abstract_inverted_index.discover | 81 |
| abstract_inverted_index.entities | 51 |
| abstract_inverted_index.limiting | 28 |
| abstract_inverted_index.matrices | 19 |
| abstract_inverted_index.networks | 13, 67 |
| abstract_inverted_index.recently | 3 |
| abstract_inverted_index.standard | 97 |
| abstract_inverted_index.CNN-ready | 40 |
| abstract_inverted_index.framework | 41 |
| abstract_inverted_index.patterns, | 27 |
| abstract_inverted_index.recurring | 26 |
| abstract_inverted_index.spatially | 17 |
| abstract_inverted_index.Artificial | 1 |
| abstract_inverted_index.biological | 53 |
| abstract_inverted_index.comparable | 65 |
| abstract_inverted_index.expression | 57, 100 |
| abstract_inverted_index.individual | 48, 86 |
| abstract_inverted_index.meaningful | 18 |
| abstract_inverted_index.outperform | 64 |
| abstract_inverted_index.advancement | 9 |
| abstract_inverted_index.approaches. | 101 |
| abstract_inverted_index.experienced | 4 |
| abstract_inverted_index.expression, | 90 |
| abstract_inverted_index.facilitates | 73 |
| abstract_inverted_index.importance. | 54 |
| abstract_inverted_index.performance | 69 |
| abstract_inverted_index.renaissance | 6 |
| abstract_inverted_index.differential | 98 |
| abstract_inverted_index.intelligence | 2 |
| abstract_inverted_index.applicability | 30 |
| abstract_inverted_index.convolutional | 11 |
| abstract_inverted_index.network-level | 50, 74 |
| abstract_inverted_index.high-throughput | 32 |
| abstract_inverted_index.disease-relevant | 83 |
| abstract_inverted_index.interpretability. | 75 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5113997880 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I4210092243 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/17 |
| sustainable_development_goals[0].score | 0.4399999976158142 |
| sustainable_development_goals[0].display_name | Partnerships for the goals |
| citation_normalized_percentile.value | 0.09273038 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |