Effective Semi-Supervised Node Classification on Few-Labeled Graph Data Article Swipe
YOU?
·
· 2019
· Open Access
·
Graph neural networks (GNNs) are designed for semi-supervised node classification on graphs where only a small subset of nodes have class labels. However, under extreme cases when very few labels are available (e.g., 1 labeled node per class), GNNs suffer from severe result quality degradation. Several existing studies make an initial effort to ease this situation, but are still far from satisfactory. In this paper, on few-labeled graph data, we propose an effective framework ABN that is readily applicable to both shallow and deep GNN architectures and significantly boosts classification accuracy. In particular, on a benchmark dataset Cora with only 1 labeled node per class, while the classic graph convolutional network (GCN) only has 44.6% accuracy, an immediate instantiation of ABN over GCN achieves 62.5% accuracy; when applied to a deep architecture DAGNN, ABN improves accuracy from 59.8% to 66.4%, which is state of the art. ABN obtains superior performance through three main algorithmic designs. First, it selects high-quality unlabeled nodes via an adaptive pseudo labeling technique, so as to adaptively enhance the training process of GNNs. Second, ABN balances the labels of the selected nodes on real-world skewed graph data by pseudo label balancing. Finally, a negative sampling regularizer is designed for ABN to further utilize the unlabeled nodes. The effectiveness of the three techniques in ABN is well-validated by both theoretical and empirical analysis. Extensive experiments, comparing 12 existing approaches on 4 benchmark datasets, demonstrate that ABN achieves state-of-the-art performance.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://export.arxiv.org/pdf/1910.02684
- OA Status
- green
- Cited By
- 4
- References
- 48
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3173673281
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3173673281Canonical identifier for this work in OpenAlex
- Title
-
Effective Semi-Supervised Node Classification on Few-Labeled Graph DataWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-10-07Full publication date if available
- Authors
-
Ziang Zhou, J. Y. Shi, Shengzhong Zhang, Zengfeng Huang, Qing LiList of authors in order
- Landing page
-
https://export.arxiv.org/pdf/1910.02684Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://export.arxiv.org/pdf/1910.02684Direct OA link when available
- Concepts
-
Computer science, Graph, Benchmark (surveying), Node (physics), Data mining, Artificial intelligence, Labeled data, Convolutional neural network, Machine learning, Theoretical computer science, Engineering, Geography, Structural engineering, GeodesyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2, 2023: 1, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
48Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3173673281 |
|---|---|
| doi | |
| ids.mag | 3173673281 |
| ids.openalex | https://openalex.org/W3173673281 |
| fwci | |
| type | preprint |
| title | Effective Semi-Supervised Node Classification on Few-Labeled Graph Data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11273 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Advanced Graph Neural Networks |
| topics[1].id | https://openalex.org/T11550 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9850999712944031 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Text and Document Classification Technologies |
| topics[2].id | https://openalex.org/T12292 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9811000227928162 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Graph Theory and Algorithms |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7800082564353943 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C132525143 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6357864141464233 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[1].display_name | Graph |
| concepts[2].id | https://openalex.org/C185798385 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5799339413642883 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[2].display_name | Benchmark (surveying) |
| concepts[3].id | https://openalex.org/C62611344 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5417985320091248 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1062658 |
| concepts[3].display_name | Node (physics) |
| concepts[4].id | https://openalex.org/C124101348 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4713560938835144 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[4].display_name | Data mining |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4427807331085205 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C2776145971 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4350694715976715 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q30673951 |
| concepts[6].display_name | Labeled data |
| concepts[7].id | https://openalex.org/C81363708 |
| concepts[7].level | 2 |
| concepts[7].score | 0.42348599433898926 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[7].display_name | Convolutional neural network |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.35382843017578125 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C80444323 |
| concepts[9].level | 1 |
| concepts[9].score | 0.2517150640487671 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[9].display_name | Theoretical computer science |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C205649164 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[11].display_name | Geography |
| concepts[12].id | https://openalex.org/C66938386 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q633538 |
| concepts[12].display_name | Structural engineering |
| concepts[13].id | https://openalex.org/C13280743 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[13].display_name | Geodesy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7800082564353943 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/graph |
| keywords[1].score | 0.6357864141464233 |
| keywords[1].display_name | Graph |
| keywords[2].id | https://openalex.org/keywords/benchmark |
| keywords[2].score | 0.5799339413642883 |
| keywords[2].display_name | Benchmark (surveying) |
| keywords[3].id | https://openalex.org/keywords/node |
| keywords[3].score | 0.5417985320091248 |
| keywords[3].display_name | Node (physics) |
| keywords[4].id | https://openalex.org/keywords/data-mining |
| keywords[4].score | 0.4713560938835144 |
| keywords[4].display_name | Data mining |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.4427807331085205 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/labeled-data |
| keywords[6].score | 0.4350694715976715 |
| keywords[6].display_name | Labeled data |
| keywords[7].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[7].score | 0.42348599433898926 |
| keywords[7].display_name | Convolutional neural network |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.35382843017578125 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[9].score | 0.2517150640487671 |
| keywords[9].display_name | Theoretical computer science |
| language | en |
| locations[0].id | mag:3173673281 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | arXiv (Cornell University) |
| locations[0].landing_page_url | http://export.arxiv.org/pdf/1910.02684 |
| authorships[0].author.id | https://openalex.org/A5039266487 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1577-9489 |
| authorships[0].author.display_name | Ziang Zhou |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ziang Zhou |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5007796732 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0465-1551 |
| authorships[1].author.display_name | J. Y. Shi |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jieming Shi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5086213157 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1783-6835 |
| authorships[2].author.display_name | Shengzhong Zhang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shengzhong Zhang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5062549536 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2671-7483 |
| authorships[3].author.display_name | Zengfeng Huang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zengfeng Huang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100404176 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3370-471X |
| authorships[4].author.display_name | Qing Li |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Qing Li |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://export.arxiv.org/pdf/1910.02684 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Effective Semi-Supervised Node Classification on Few-Labeled Graph Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-10-10T17:16:08.811792 |
| primary_topic.id | https://openalex.org/T11273 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Advanced Graph Neural Networks |
| related_works | https://openalex.org/W3045163738, https://openalex.org/W3135055261, https://openalex.org/W3166215705, https://openalex.org/W3166902031, https://openalex.org/W3095111674, https://openalex.org/W2893976922, https://openalex.org/W2970992015, https://openalex.org/W3170895581, https://openalex.org/W3121904315, https://openalex.org/W2904049490, https://openalex.org/W2952679378, https://openalex.org/W2099352187, https://openalex.org/W2792006136, https://openalex.org/W2931349758, https://openalex.org/W3112936348, https://openalex.org/W2906493541, https://openalex.org/W2188279613, https://openalex.org/W3142209142, https://openalex.org/W1442005143, https://openalex.org/W3109046418 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | mag:3173673281 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | arXiv (Cornell University) |
| best_oa_location.landing_page_url | http://export.arxiv.org/pdf/1910.02684 |
| primary_location.id | mag:3173673281 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | arXiv (Cornell University) |
| primary_location.landing_page_url | http://export.arxiv.org/pdf/1910.02684 |
| publication_date | 2019-10-07 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W637153065, https://openalex.org/W2393319904, https://openalex.org/W2962756421, https://openalex.org/W2809583854, https://openalex.org/W2964282455, https://openalex.org/W2149479912, https://openalex.org/W2118978333, https://openalex.org/W2964311892, https://openalex.org/W2964015378, https://openalex.org/W2111316763, https://openalex.org/W2964321699, https://openalex.org/W3028395849, https://openalex.org/W2440599146, https://openalex.org/W2949911880, https://openalex.org/W2962767366, https://openalex.org/W2118045473, https://openalex.org/W3105705953, https://openalex.org/W2998496395, https://openalex.org/W2169196724, https://openalex.org/W2066636486, https://openalex.org/W3034492151, https://openalex.org/W2558460151, https://openalex.org/W2952179887, https://openalex.org/W2963858333, https://openalex.org/W2097089247, https://openalex.org/W2918342466, https://openalex.org/W2964725673, https://openalex.org/W2101210369, https://openalex.org/W197270748, https://openalex.org/W2903871660, https://openalex.org/W2964121744, https://openalex.org/W2963782635, https://openalex.org/W2751808960, https://openalex.org/W2998269939, https://openalex.org/W3120213386, https://openalex.org/W2599095274, https://openalex.org/W2105015213, https://openalex.org/W1533861849, https://openalex.org/W3042770487, https://openalex.org/W3104097132, https://openalex.org/W2964114465, https://openalex.org/W2964051675, https://openalex.org/W2900763475, https://openalex.org/W2949266350, https://openalex.org/W2153959628, https://openalex.org/W2111708605, https://openalex.org/W2970971581, https://openalex.org/W2130553454 |
| referenced_works_count | 48 |
| abstract_inverted_index.1 | 33, 100 |
| abstract_inverted_index.4 | 233 |
| abstract_inverted_index.a | 14, 94, 129, 196 |
| abstract_inverted_index.12 | 229 |
| abstract_inverted_index.In | 91 |
| abstract_inverted_index.an | 49, 71, 116, 162 |
| abstract_inverted_index.as | 168 |
| abstract_inverted_index.by | 191, 220 |
| abstract_inverted_index.in | 216 |
| abstract_inverted_index.is | 76, 141, 200, 218 |
| abstract_inverted_index.it | 156 |
| abstract_inverted_index.of | 17, 119, 143, 175, 182, 212 |
| abstract_inverted_index.on | 10, 65, 93, 186, 232 |
| abstract_inverted_index.so | 167 |
| abstract_inverted_index.to | 52, 79, 128, 138, 169, 204 |
| abstract_inverted_index.we | 69 |
| abstract_inverted_index.ABN | 74, 120, 133, 178, 203, 217, 238 |
| abstract_inverted_index.GCN | 122 |
| abstract_inverted_index.GNN | 84 |
| abstract_inverted_index.The | 210 |
| abstract_inverted_index.and | 82, 86, 223 |
| abstract_inverted_index.are | 4, 30, 57 |
| abstract_inverted_index.but | 56 |
| abstract_inverted_index.far | 59 |
| abstract_inverted_index.few | 28 |
| abstract_inverted_index.for | 6, 202 |
| abstract_inverted_index.has | 113 |
| abstract_inverted_index.per | 36, 103 |
| abstract_inverted_index.the | 106, 144, 172, 180, 183, 207, 213 |
| abstract_inverted_index.via | 161 |
| abstract_inverted_index. In | 62 |
| abstract_inverted_index.Cora | 97 |
| abstract_inverted_index.GNNs | 38 |
| abstract_inverted_index.art. | 145 |
| abstract_inverted_index.both | 80, 221 |
| abstract_inverted_index.data | 190 |
| abstract_inverted_index.deep | 83, 130 |
| abstract_inverted_index.ease | 53 |
| abstract_inverted_index.from | 40, 60, 136 |
| abstract_inverted_index.have | 19 |
| abstract_inverted_index.main | 152 |
| abstract_inverted_index.make | 48 |
| abstract_inverted_index.node | 8, 35, 102 |
| abstract_inverted_index.only | 13, 99, 112 |
| abstract_inverted_index.over | 121 |
| abstract_inverted_index.that | 75, 237 |
| abstract_inverted_index.this | 54, 63 |
| abstract_inverted_index.very | 27 |
| abstract_inverted_index.when | 26, 126 |
| abstract_inverted_index.with | 98 |
| abstract_inverted_index. ABN | 146 |
| abstract_inverted_index.(GCN) | 111 |
| abstract_inverted_index.44.6% | 114 |
| abstract_inverted_index.59.8% | 137 |
| abstract_inverted_index.62.5% | 124 |
| abstract_inverted_index.GNNs. | 176 |
| abstract_inverted_index.Graph | 0 |
| abstract_inverted_index.cases | 25 |
| abstract_inverted_index.class | 20 |
| abstract_inverted_index.data, | 68 |
| abstract_inverted_index.graph | 67, 108, 189 |
| abstract_inverted_index.label | 193 |
| abstract_inverted_index.nodes | 18, 160, 185 |
| abstract_inverted_index.small | 15 |
| abstract_inverted_index.state | 142 |
| abstract_inverted_index.still | 58 |
| abstract_inverted_index.three | 151, 214 |
| abstract_inverted_index.under | 23 |
| abstract_inverted_index.where | 12 |
| abstract_inverted_index.which | 140 |
| abstract_inverted_index.while | 105 |
| abstract_inverted_index.(GNNs) | 3 |
| abstract_inverted_index.(e.g., | 32 |
| abstract_inverted_index.66.4%, | 139 |
| abstract_inverted_index.DAGNN, | 132 |
| abstract_inverted_index.First, | 155 |
| abstract_inverted_index.boosts | 88 |
| abstract_inverted_index.class, | 104 |
| abstract_inverted_index.effort | 51 |
| abstract_inverted_index.graphs | 11 |
| abstract_inverted_index.labels | 29, 181 |
| abstract_inverted_index.neural | 1 |
| abstract_inverted_index.nodes. | 209 |
| abstract_inverted_index.paper, | 64 |
| abstract_inverted_index.pseudo | 164, 192 |
| abstract_inverted_index.result | 42 |
| abstract_inverted_index.severe | 41 |
| abstract_inverted_index.skewed | 188 |
| abstract_inverted_index.subset | 16 |
| abstract_inverted_index.suffer | 39 |
| abstract_inverted_index.Second, | 177 |
| abstract_inverted_index.Several | 45 |
| abstract_inverted_index.applied | 127 |
| abstract_inverted_index.class), | 37 |
| abstract_inverted_index.classic | 107 |
| abstract_inverted_index.dataset | 96 |
| abstract_inverted_index.enhance | 171 |
| abstract_inverted_index.extreme | 24 |
| abstract_inverted_index.further | 205 |
| abstract_inverted_index.initial | 50 |
| abstract_inverted_index.labeled | 34, 101 |
| abstract_inverted_index.labels. | 21 |
| abstract_inverted_index.network | 110 |
| abstract_inverted_index.obtains | 147 |
| abstract_inverted_index.process | 174 |
| abstract_inverted_index.propose | 70 |
| abstract_inverted_index.quality | 43 |
| abstract_inverted_index.readily | 77 |
| abstract_inverted_index.selects | 157 |
| abstract_inverted_index.shallow | 81 |
| abstract_inverted_index.studies | 47 |
| abstract_inverted_index.through | 150 |
| abstract_inverted_index.utilize | 206 |
| abstract_inverted_index.Finally, | 195 |
| abstract_inverted_index.However, | 22 |
| abstract_inverted_index.accuracy | 135 |
| abstract_inverted_index.achieves | 123, 239 |
| abstract_inverted_index.adaptive | 163 |
| abstract_inverted_index.balances | 179 |
| abstract_inverted_index.designed | 5, 201 |
| abstract_inverted_index.designs. | 154 |
| abstract_inverted_index.existing | 46, 230 |
| abstract_inverted_index.improves | 134 |
| abstract_inverted_index.labeling | 165 |
| abstract_inverted_index.negative | 197 |
| abstract_inverted_index.networks | 2 |
| abstract_inverted_index.sampling | 198 |
| abstract_inverted_index.selected | 184 |
| abstract_inverted_index.superior | 148 |
| abstract_inverted_index.training | 173 |
| abstract_inverted_index.Extensive | 226 |
| abstract_inverted_index.accuracy, | 115 |
| abstract_inverted_index.accuracy. | 90 |
| abstract_inverted_index.accuracy; | 125 |
| abstract_inverted_index.analysis. | 225 |
| abstract_inverted_index.available | 31 |
| abstract_inverted_index.benchmark | 95, 234 |
| abstract_inverted_index.comparing | 228 |
| abstract_inverted_index.datasets, | 235 |
| abstract_inverted_index.effective | 72 |
| abstract_inverted_index.empirical | 224 |
| abstract_inverted_index.framework | 73 |
| abstract_inverted_index.immediate | 117 |
| abstract_inverted_index.unlabeled | 159, 208 |
| abstract_inverted_index.adaptively | 170 |
| abstract_inverted_index.applicable | 78 |
| abstract_inverted_index.approaches | 231 |
| abstract_inverted_index.balancing. | 194 |
| abstract_inverted_index.real-world | 187 |
| abstract_inverted_index.situation, | 55 |
| abstract_inverted_index.technique, | 166 |
| abstract_inverted_index.techniques | 215 |
| abstract_inverted_index.algorithmic | 153 |
| abstract_inverted_index.demonstrate | 236 |
| abstract_inverted_index.few-labeled | 66 |
| abstract_inverted_index.particular, | 92 |
| abstract_inverted_index.performance | 149 |
| abstract_inverted_index.regularizer | 199 |
| abstract_inverted_index.theoretical | 222 |
| abstract_inverted_index.architecture | 131 |
| abstract_inverted_index.degradation. | 44 |
| abstract_inverted_index.experiments, | 227 |
| abstract_inverted_index.high-quality | 158 |
| abstract_inverted_index.performance. | 241 |
| abstract_inverted_index.architectures | 85 |
| abstract_inverted_index.convolutional | 109 |
| abstract_inverted_index.effectiveness | 211 |
| abstract_inverted_index.instantiation | 118 |
| abstract_inverted_index.satisfactory. | 61 |
| abstract_inverted_index.significantly | 87 |
| abstract_inverted_index.classification | 9, 89 |
| abstract_inverted_index.well-validated | 219 |
| abstract_inverted_index.semi-supervised | 7 |
| abstract_inverted_index.state-of-the-art | 240 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |