Effective Stabilized Self-Training on Few-Labeled Graph Data Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1910.02684
Graph neural networks (GNNs) are designed for semi-supervised node classification on graphs where only a subset of nodes have class labels. However, under extreme cases when very few labels are available (e.g., 1 labeled node per class), GNNs suffer from severe performance degradation. Specifically, we observe that existing GNNs suffer from unstable training process on few-labeled graphs, resulting to inferior performance on node classification. Therefore, we propose an effective framework, Stabilized Self-Training (SST), which is applicable to existing GNNs to handle the scarcity of labeled data, and consequently, boost classification accuracy. We conduct thorough empirical and theoretical analysis to support our findings and motivate the algorithmic designs in SST. We apply SST to two popular GNN models GCN and DAGNN, to get SSTGCN and SSTDA methods respectively, and evaluate the two methods against 10 competitors over 5 benchmarking datasets. Extensive experiments show that the proposed SST framework is highly effective, especially when few labeled data are available. Our methods achieve superior performance under almost all settings over all datasets. For instance, on a Cora dataset with only 1 labeled node per class, the accuracy of SSTGCN is 62.5%, 17.9% higher than GCN, and the accuracy of SSTDA is 66.4%, which outperforms DAGNN by 6.6%.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1910.02684
- https://arxiv.org/pdf/1910.02684
- OA Status
- green
- Cited By
- 6
- References
- 62
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2978310188
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2978310188Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1910.02684Digital Object Identifier
- Title
-
Effective Stabilized Self-Training on Few-Labeled Graph DataWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-10-07Full publication date if available
- Authors
-
Ziang Zhou, Shenzhong Zhang, Zengfeng HuangList of authors in order
- Landing page
-
https://arxiv.org/abs/1910.02684Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1910.02684Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1910.02684Direct OA link when available
- Concepts
-
Computer science, Benchmarking, Graph, Labeled data, Node (physics), Artificial intelligence, Machine learning, Data mining, Class (philosophy), Training set, Theoretical computer science, Engineering, Marketing, Business, Structural engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2023: 1, 2021: 2, 2020: 1, 2019: 1Per-year citation counts (last 5 years)
- References (count)
-
62Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2978310188 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1910.02684 |
| ids.doi | https://doi.org/10.48550/arxiv.1910.02684 |
| ids.mag | 2978310188 |
| ids.openalex | https://openalex.org/W2978310188 |
| fwci | 0.61447098 |
| type | preprint |
| title | Effective Stabilized Self-Training on Few-Labeled Graph Data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11273 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Advanced Graph Neural Networks |
| topics[1].id | https://openalex.org/T11550 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9657999873161316 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Text and Document Classification Technologies |
| topics[2].id | https://openalex.org/T10064 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9517999887466431 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3109 |
| topics[2].subfield.display_name | Statistical and Nonlinear Physics |
| topics[2].display_name | Complex Network Analysis Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7558362483978271 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C86251818 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6352208852767944 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q816754 |
| concepts[1].display_name | Benchmarking |
| concepts[2].id | https://openalex.org/C132525143 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5783886313438416 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[2].display_name | Graph |
| concepts[3].id | https://openalex.org/C2776145971 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5305284261703491 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q30673951 |
| concepts[3].display_name | Labeled data |
| concepts[4].id | https://openalex.org/C62611344 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4931044280529022 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1062658 |
| concepts[4].display_name | Node (physics) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.46344709396362305 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4526630640029907 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4452058672904968 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C2777212361 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4290361702442169 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[8].display_name | Class (philosophy) |
| concepts[9].id | https://openalex.org/C51632099 |
| concepts[9].level | 2 |
| concepts[9].score | 0.41320914030075073 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3985153 |
| concepts[9].display_name | Training set |
| concepts[10].id | https://openalex.org/C80444323 |
| concepts[10].level | 1 |
| concepts[10].score | 0.19694823026657104 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[10].display_name | Theoretical computer science |
| concepts[11].id | https://openalex.org/C127413603 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[11].display_name | Engineering |
| concepts[12].id | https://openalex.org/C162853370 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q39809 |
| concepts[12].display_name | Marketing |
| concepts[13].id | https://openalex.org/C144133560 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[13].display_name | Business |
| concepts[14].id | https://openalex.org/C66938386 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q633538 |
| concepts[14].display_name | Structural engineering |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7558362483978271 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/benchmarking |
| keywords[1].score | 0.6352208852767944 |
| keywords[1].display_name | Benchmarking |
| keywords[2].id | https://openalex.org/keywords/graph |
| keywords[2].score | 0.5783886313438416 |
| keywords[2].display_name | Graph |
| keywords[3].id | https://openalex.org/keywords/labeled-data |
| keywords[3].score | 0.5305284261703491 |
| keywords[3].display_name | Labeled data |
| keywords[4].id | https://openalex.org/keywords/node |
| keywords[4].score | 0.4931044280529022 |
| keywords[4].display_name | Node (physics) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.46344709396362305 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.4526630640029907 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.4452058672904968 |
| keywords[7].display_name | Data mining |
| keywords[8].id | https://openalex.org/keywords/class |
| keywords[8].score | 0.4290361702442169 |
| keywords[8].display_name | Class (philosophy) |
| keywords[9].id | https://openalex.org/keywords/training-set |
| keywords[9].score | 0.41320914030075073 |
| keywords[9].display_name | Training set |
| keywords[10].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[10].score | 0.19694823026657104 |
| keywords[10].display_name | Theoretical computer science |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1910.02684 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1910.02684 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1910.02684 |
| locations[1].id | doi:10.48550/arxiv.1910.02684 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1910.02684 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5039266487 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1577-9489 |
| authorships[0].author.display_name | Ziang Zhou |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ziang Zhou |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5016670385 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Shenzhong Zhang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shenzhong Zhang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5062549536 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2671-7483 |
| authorships[2].author.display_name | Zengfeng Huang |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Zengfeng Huang |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1910.02684 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Effective Stabilized Self-Training on Few-Labeled Graph Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11273 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Advanced Graph Neural Networks |
| related_works | https://openalex.org/W2130553454, https://openalex.org/W3022007134, https://openalex.org/W4317548404, https://openalex.org/W2087783760, https://openalex.org/W3104108945, https://openalex.org/W2033364610, https://openalex.org/W3163689946, https://openalex.org/W2797776314, https://openalex.org/W2153927146, https://openalex.org/W2091066410 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2020 |
| counts_by_year[3].cited_by_count | 1 |
| counts_by_year[4].year | 2019 |
| counts_by_year[4].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1910.02684 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1910.02684 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1910.02684 |
| primary_location.id | pmh:oai:arXiv.org:1910.02684 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1910.02684 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1910.02684 |
| publication_date | 2019-10-07 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2751808960, https://openalex.org/W2238429470, https://openalex.org/W2900470550, https://openalex.org/W2893944917, https://openalex.org/W2465015709, https://openalex.org/W2964282455, https://openalex.org/W1745817670, https://openalex.org/W2998496395, https://openalex.org/W3039474590, https://openalex.org/W2098136027, https://openalex.org/W2097089247, https://openalex.org/W2440599146, https://openalex.org/W1815876077, https://openalex.org/W3105705953, https://openalex.org/W2169196724, https://openalex.org/W2624431344, https://openalex.org/W3042770487, https://openalex.org/W2962756421, https://openalex.org/W2918342466, https://openalex.org/W2099596552, https://openalex.org/W637153065, https://openalex.org/W2519887557, https://openalex.org/W2599095274, https://openalex.org/W2432969557, https://openalex.org/W2588246945, https://openalex.org/W2963858333, https://openalex.org/W3104097132, https://openalex.org/W2113691817, https://openalex.org/W3120213386, https://openalex.org/W2105015213, https://openalex.org/W2964311892, https://openalex.org/W2786915849, https://openalex.org/W2964051675, https://openalex.org/W2118978333, https://openalex.org/W2118045473, https://openalex.org/W2964121744, https://openalex.org/W2912205739, https://openalex.org/W2964321699, https://openalex.org/W2088907244, https://openalex.org/W197270748, https://openalex.org/W2251341549, https://openalex.org/W2130553454, https://openalex.org/W2163568299, https://openalex.org/W2903871660, https://openalex.org/W2558460151, https://openalex.org/W2126727667, https://openalex.org/W2111708605, https://openalex.org/W2970971581, https://openalex.org/W2998269939, https://openalex.org/W2393319904, https://openalex.org/W2949911880, https://openalex.org/W1533861849, https://openalex.org/W3028395849, https://openalex.org/W2067323260, https://openalex.org/W2149479912, https://openalex.org/W2079057609, https://openalex.org/W2101210369, https://openalex.org/W2809583854, https://openalex.org/W2066636486, https://openalex.org/W2111316763, https://openalex.org/W2804057010, https://openalex.org/W3006964325 |
| referenced_works_count | 62 |
| abstract_inverted_index.1 | 32, 177 |
| abstract_inverted_index.5 | 136 |
| abstract_inverted_index.a | 14, 172 |
| abstract_inverted_index.10 | 133 |
| abstract_inverted_index.We | 91, 109 |
| abstract_inverted_index.an | 67 |
| abstract_inverted_index.by | 202 |
| abstract_inverted_index.in | 107 |
| abstract_inverted_index.is | 74, 147, 186, 197 |
| abstract_inverted_index.of | 16, 83, 184, 195 |
| abstract_inverted_index.on | 10, 54, 61, 171 |
| abstract_inverted_index.to | 58, 76, 79, 98, 112, 120 |
| abstract_inverted_index.we | 44, 65 |
| abstract_inverted_index.For | 169 |
| abstract_inverted_index.GCN | 117 |
| abstract_inverted_index.GNN | 115 |
| abstract_inverted_index.Our | 157 |
| abstract_inverted_index.SST | 111, 145 |
| abstract_inverted_index.all | 164, 167 |
| abstract_inverted_index.and | 86, 95, 102, 118, 123, 127, 192 |
| abstract_inverted_index.are | 4, 29, 155 |
| abstract_inverted_index.few | 27, 152 |
| abstract_inverted_index.for | 6 |
| abstract_inverted_index.get | 121 |
| abstract_inverted_index.our | 100 |
| abstract_inverted_index.per | 35, 180 |
| abstract_inverted_index.the | 81, 104, 129, 143, 182, 193 |
| abstract_inverted_index.two | 113, 130 |
| abstract_inverted_index.Cora | 173 |
| abstract_inverted_index.GCN, | 191 |
| abstract_inverted_index.GNNs | 37, 48, 78 |
| abstract_inverted_index.SST. | 108 |
| abstract_inverted_index.data | 154 |
| abstract_inverted_index.from | 39, 50 |
| abstract_inverted_index.have | 18 |
| abstract_inverted_index.node | 8, 34, 62, 179 |
| abstract_inverted_index.only | 13, 176 |
| abstract_inverted_index.over | 135, 166 |
| abstract_inverted_index.show | 141 |
| abstract_inverted_index.than | 190 |
| abstract_inverted_index.that | 46, 142 |
| abstract_inverted_index.very | 26 |
| abstract_inverted_index.when | 25, 151 |
| abstract_inverted_index.with | 175 |
| abstract_inverted_index.17.9% | 188 |
| abstract_inverted_index.6.6%. | 203 |
| abstract_inverted_index.DAGNN | 201 |
| abstract_inverted_index.Graph | 0 |
| abstract_inverted_index.SSTDA | 124, 196 |
| abstract_inverted_index.apply | 110 |
| abstract_inverted_index.boost | 88 |
| abstract_inverted_index.cases | 24 |
| abstract_inverted_index.class | 19 |
| abstract_inverted_index.data, | 85 |
| abstract_inverted_index.nodes | 17 |
| abstract_inverted_index.under | 22, 162 |
| abstract_inverted_index.where | 12 |
| abstract_inverted_index.which | 73, 199 |
| abstract_inverted_index.(GNNs) | 3 |
| abstract_inverted_index.(SST), | 72 |
| abstract_inverted_index.(e.g., | 31 |
| abstract_inverted_index.62.5%, | 187 |
| abstract_inverted_index.66.4%, | 198 |
| abstract_inverted_index.DAGNN, | 119 |
| abstract_inverted_index.SSTGCN | 122, 185 |
| abstract_inverted_index.almost | 163 |
| abstract_inverted_index.class, | 181 |
| abstract_inverted_index.graphs | 11 |
| abstract_inverted_index.handle | 80 |
| abstract_inverted_index.higher | 189 |
| abstract_inverted_index.highly | 148 |
| abstract_inverted_index.labels | 28 |
| abstract_inverted_index.models | 116 |
| abstract_inverted_index.neural | 1 |
| abstract_inverted_index.severe | 40 |
| abstract_inverted_index.subset | 15 |
| abstract_inverted_index.suffer | 38, 49 |
| abstract_inverted_index.achieve | 159 |
| abstract_inverted_index.against | 132 |
| abstract_inverted_index.class), | 36 |
| abstract_inverted_index.conduct | 92 |
| abstract_inverted_index.dataset | 174 |
| abstract_inverted_index.designs | 106 |
| abstract_inverted_index.extreme | 23 |
| abstract_inverted_index.graphs, | 56 |
| abstract_inverted_index.labeled | 33, 84, 153, 178 |
| abstract_inverted_index.labels. | 20 |
| abstract_inverted_index.methods | 125, 131, 158 |
| abstract_inverted_index.observe | 45 |
| abstract_inverted_index.popular | 114 |
| abstract_inverted_index.process | 53 |
| abstract_inverted_index.propose | 66 |
| abstract_inverted_index.support | 99 |
| abstract_inverted_index.However, | 21 |
| abstract_inverted_index.accuracy | 183, 194 |
| abstract_inverted_index.analysis | 97 |
| abstract_inverted_index.designed | 5 |
| abstract_inverted_index.evaluate | 128 |
| abstract_inverted_index.existing | 47, 77 |
| abstract_inverted_index.findings | 101 |
| abstract_inverted_index.inferior | 59 |
| abstract_inverted_index.motivate | 103 |
| abstract_inverted_index.networks | 2 |
| abstract_inverted_index.proposed | 144 |
| abstract_inverted_index.scarcity | 82 |
| abstract_inverted_index.settings | 165 |
| abstract_inverted_index.superior | 160 |
| abstract_inverted_index.thorough | 93 |
| abstract_inverted_index.training | 52 |
| abstract_inverted_index.unstable | 51 |
| abstract_inverted_index.Extensive | 139 |
| abstract_inverted_index.accuracy. | 90 |
| abstract_inverted_index.available | 30 |
| abstract_inverted_index.datasets. | 138, 168 |
| abstract_inverted_index.effective | 68 |
| abstract_inverted_index.empirical | 94 |
| abstract_inverted_index.framework | 146 |
| abstract_inverted_index.instance, | 170 |
| abstract_inverted_index.resulting | 57 |
| abstract_inverted_index.Stabilized | 70 |
| abstract_inverted_index.Therefore, | 64 |
| abstract_inverted_index.applicable | 75 |
| abstract_inverted_index.available. | 156 |
| abstract_inverted_index.effective, | 149 |
| abstract_inverted_index.especially | 150 |
| abstract_inverted_index.framework, | 69 |
| abstract_inverted_index.algorithmic | 105 |
| abstract_inverted_index.competitors | 134 |
| abstract_inverted_index.experiments | 140 |
| abstract_inverted_index.few-labeled | 55 |
| abstract_inverted_index.outperforms | 200 |
| abstract_inverted_index.performance | 41, 60, 161 |
| abstract_inverted_index.theoretical | 96 |
| abstract_inverted_index.benchmarking | 137 |
| abstract_inverted_index.degradation. | 42 |
| abstract_inverted_index.Self-Training | 71 |
| abstract_inverted_index.Specifically, | 43 |
| abstract_inverted_index.consequently, | 87 |
| abstract_inverted_index.respectively, | 126 |
| abstract_inverted_index.classification | 9, 89 |
| abstract_inverted_index.classification. | 63 |
| abstract_inverted_index.semi-supervised | 7 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.75959985 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |