Effectiveness of Pre-Trained CNN Networks for Detecting Abnormal Activities in Online Exams Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1109/access.2024.3359689
Online exams are growing increasingly popular in organizations and educational institutes because they are more flexible and cost-effective than conventional paper-based exams. When face-to-face exams are not possible, such as during floods, unexpected situations, or pandemics like COVID-19, this exam mod has become even more popular and important. However, online exams may have difficulties, such as the need for a reliable internet connection and the possibility of cheating. Because there is no human supervisor present to monitor the exam, so cheating is a major concern. The environment employed for the online exams ensures that every student finalizes the evaluation process without using any type of cheating. This study investigates the detection and recognition of unusual behavior in an academic setting, such as online exams, to prevent students from cheating or engaging in unethical behavior. After consulting with experts and reviewing the online exam held in Covid-19 and other online exams, selected the four most common cheating activities found in the online exam. The study extracts key frames using motion-based frame extraction techniques before employing advanced deep learning techniques with various convolutional neural network configurations. This study presents several deep learning-based models that analyze the video exam to classify four categories of cheating. This method extracts key frames from a video sequence/stream based on human motion. This research developed a real dataset of cheating behaviours and conducted comprehensive experiments with pre-trained and suggested deep-learning models. When evaluated using standard performance criteria, the YOLOv5 model outperforms other pre-trained and fine-tuned approaches for detecting unusual activity.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2024.3359689
- https://ieeexplore.ieee.org/ielx7/6287639/6514899/10416868.pdf
- OA Status
- gold
- Cited By
- 11
- References
- 32
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391341773
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391341773Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2024.3359689Digital Object Identifier
- Title
-
Effectiveness of Pre-Trained CNN Networks for Detecting Abnormal Activities in Online ExamsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Muhammad Ramzan, Adnan Abid, Muhammad Bilal, Khalid Mahmood Aamir, Sufyan Ali Memon, Tae‐Sun ChungList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2024.3359689Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/6287639/6514899/10416868.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/6287639/6514899/10416868.pdfDirect OA link when available
- Concepts
-
Computer science, Artificial intelligence, Machine learningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
11Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 6Per-year citation counts (last 5 years)
- References (count)
-
32Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391341773 |
|---|---|
| doi | https://doi.org/10.1109/access.2024.3359689 |
| ids.doi | https://doi.org/10.1109/access.2024.3359689 |
| ids.openalex | https://openalex.org/W4391341773 |
| fwci | 11.75056009 |
| type | article |
| title | Effectiveness of Pre-Trained CNN Networks for Detecting Abnormal Activities in Online Exams |
| awards[0].id | https://openalex.org/G4118436567 |
| awards[0].funder_id | https://openalex.org/F4320328359 |
| awards[0].display_name | |
| awards[0].funder_award_id | IITP-2021-0-02051 |
| awards[0].funder_display_name | Ministry of Science and ICT, South Korea |
| biblio.issue | |
| biblio.volume | 12 |
| biblio.last_page | 21519 |
| biblio.first_page | 21503 |
| topics[0].id | https://openalex.org/T11122 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.875 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1706 |
| topics[0].subfield.display_name | Computer Science Applications |
| topics[0].display_name | Online Learning and Analytics |
| topics[1].id | https://openalex.org/T13161 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.8690999746322632 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3304 |
| topics[1].subfield.display_name | Education |
| topics[1].display_name | Ideological and Political Education |
| topics[2].id | https://openalex.org/T13693 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.8450999855995178 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Smart Systems and Machine Learning |
| funders[0].id | https://openalex.org/F4320328359 |
| funders[0].ror | https://ror.org/01wpjm123 |
| funders[0].display_name | Ministry of Science and ICT, South Korea |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7608665823936462 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.46005508303642273 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C119857082 |
| concepts[2].level | 1 |
| concepts[2].score | 0.3267974257469177 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[2].display_name | Machine learning |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7608665823936462 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.46005508303642273 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/machine-learning |
| keywords[2].score | 0.3267974257469177 |
| keywords[2].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.1109/access.2024.3359689 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10416868.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2024.3359689 |
| locations[1].id | pmh:oai:doaj.org/article:f5c8169b34bd414a81bcd1f55d97247a |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 12, Pp 21503-21519 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/f5c8169b34bd414a81bcd1f55d97247a |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5059496118 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1770-8905 |
| authorships[0].author.display_name | Muhammad Ramzan |
| authorships[0].countries | PK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I87482320 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science, University of Management & Technology, Lahore, Pakistan |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I160968435 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Software Engineering, Faculty of Computing and Information Technology, University of Sargodha, Sargodha, Pakistan |
| authorships[0].institutions[0].id | https://openalex.org/I87482320 |
| authorships[0].institutions[0].ror | https://ror.org/0095xcq10 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I87482320 |
| authorships[0].institutions[0].country_code | PK |
| authorships[0].institutions[0].display_name | University of Management and Technology |
| authorships[0].institutions[1].id | https://openalex.org/I160968435 |
| authorships[0].institutions[1].ror | https://ror.org/0086rpr26 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I160968435 |
| authorships[0].institutions[1].country_code | PK |
| authorships[0].institutions[1].display_name | University of Sargodha |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Muhammad Ramzan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science, University of Management & Technology, Lahore, Pakistan, Department of Software Engineering, Faculty of Computing and Information Technology, University of Sargodha, Sargodha, Pakistan |
| authorships[1].author.id | https://openalex.org/A5010064223 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2602-2876 |
| authorships[1].author.display_name | Adnan Abid |
| authorships[1].countries | PK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1323252656, https://openalex.org/I172780181 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Data Science, Faculty of Computing and Information Technology, University of the Punjab, Lahore, Pakistan |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I87482320 |
| authorships[1].affiliations[1].raw_affiliation_string | Department of Computer Science, University of Management & Technology, Lahore, Pakistan |
| authorships[1].institutions[0].id | https://openalex.org/I1323252656 |
| authorships[1].institutions[0].ror | https://ror.org/00ngv8j44 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I1323252656 |
| authorships[1].institutions[0].country_code | PK |
| authorships[1].institutions[0].display_name | Information Technology University |
| authorships[1].institutions[1].id | https://openalex.org/I87482320 |
| authorships[1].institutions[1].ror | https://ror.org/0095xcq10 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I87482320 |
| authorships[1].institutions[1].country_code | PK |
| authorships[1].institutions[1].display_name | University of Management and Technology |
| authorships[1].institutions[2].id | https://openalex.org/I172780181 |
| authorships[1].institutions[2].ror | https://ror.org/011maz450 |
| authorships[1].institutions[2].type | education |
| authorships[1].institutions[2].lineage | https://openalex.org/I172780181 |
| authorships[1].institutions[2].country_code | PK |
| authorships[1].institutions[2].display_name | University of the Punjab |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Adnan Abid |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science, University of Management & Technology, Lahore, Pakistan, Department of Data Science, Faculty of Computing and Information Technology, University of the Punjab, Lahore, Pakistan |
| authorships[2].author.id | https://openalex.org/A5012666416 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9827-5023 |
| authorships[2].author.display_name | Muhammad Bilal |
| authorships[2].countries | MY |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I84339108 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computing and Information Systems, School of Engineering and Technology, Sunway University, Petaling Jaya, Selangor, Malaysia |
| authorships[2].institutions[0].id | https://openalex.org/I84339108 |
| authorships[2].institutions[0].ror | https://ror.org/04mjt7f73 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I84339108 |
| authorships[2].institutions[0].country_code | MY |
| authorships[2].institutions[0].display_name | Sunway University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Muhammad Bilal |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computing and Information Systems, School of Engineering and Technology, Sunway University, Petaling Jaya, Selangor, Malaysia |
| authorships[3].author.id | https://openalex.org/A5008802727 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6852-7031 |
| authorships[3].author.display_name | Khalid Mahmood Aamir |
| authorships[3].countries | PK |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1323252656, https://openalex.org/I160968435 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Information Technology, Faculty of Computing and Information Technology, University of Sargodha, Sargodha, Pakistan |
| authorships[3].institutions[0].id | https://openalex.org/I1323252656 |
| authorships[3].institutions[0].ror | https://ror.org/00ngv8j44 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I1323252656 |
| authorships[3].institutions[0].country_code | PK |
| authorships[3].institutions[0].display_name | Information Technology University |
| authorships[3].institutions[1].id | https://openalex.org/I160968435 |
| authorships[3].institutions[1].ror | https://ror.org/0086rpr26 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I160968435 |
| authorships[3].institutions[1].country_code | PK |
| authorships[3].institutions[1].display_name | University of Sargodha |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Khalid M. Aamir |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Information Technology, Faculty of Computing and Information Technology, University of Sargodha, Sargodha, Pakistan |
| authorships[4].author.id | https://openalex.org/A5072292929 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5592-9990 |
| authorships[4].author.display_name | Sufyan Ali Memon |
| authorships[4].countries | KR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I28777354 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Defense System Engineering, Sejong University, Seoul, South Korea |
| authorships[4].institutions[0].id | https://openalex.org/I28777354 |
| authorships[4].institutions[0].ror | https://ror.org/00aft1q37 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I28777354 |
| authorships[4].institutions[0].country_code | KR |
| authorships[4].institutions[0].display_name | Sejong University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Sufyan A. Memon |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Defense System Engineering, Sejong University, Seoul, South Korea |
| authorships[5].author.id | https://openalex.org/A5044985062 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5992-1136 |
| authorships[5].author.display_name | Tae‐Sun Chung |
| authorships[5].countries | KR |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I57664883 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Artificial Intelligence, Ajou University, Suwon-Si, South Korea |
| authorships[5].institutions[0].id | https://openalex.org/I57664883 |
| authorships[5].institutions[0].ror | https://ror.org/03tzb2h73 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I57664883 |
| authorships[5].institutions[0].country_code | KR |
| authorships[5].institutions[0].display_name | Ajou University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Tae-Sun Chung |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Artificial Intelligence, Ajou University, Suwon-Si, South Korea |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10416868.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Effectiveness of Pre-Trained CNN Networks for Detecting Abnormal Activities in Online Exams |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11122 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.875 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1706 |
| primary_topic.subfield.display_name | Computer Science Applications |
| primary_topic.display_name | Online Learning and Analytics |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3046775127, https://openalex.org/W3107602296, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W4313488044, https://openalex.org/W3209574120, https://openalex.org/W4312192474, https://openalex.org/W4210805261 |
| cited_by_count | 11 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 6 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2024.3359689 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10416868.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2024.3359689 |
| primary_location.id | doi:10.1109/access.2024.3359689 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10416868.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2024.3359689 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4281783844, https://openalex.org/W4210754717, https://openalex.org/W4225005369, https://openalex.org/W4200294590, https://openalex.org/W4322767330, https://openalex.org/W1554365104, https://openalex.org/W2550355518, https://openalex.org/W3197496197, https://openalex.org/W2273188195, https://openalex.org/W3005996595, https://openalex.org/W4224290522, https://openalex.org/W4206744538, https://openalex.org/W4285241021, https://openalex.org/W3122241291, https://openalex.org/W4255920120, https://openalex.org/W2570721454, https://openalex.org/W2900785440, https://openalex.org/W2003061927, https://openalex.org/W3091616849, https://openalex.org/W3211254352, https://openalex.org/W3133625391, https://openalex.org/W4220695000, https://openalex.org/W3216964808, https://openalex.org/W4213433011, https://openalex.org/W4206577249, https://openalex.org/W4366773002, https://openalex.org/W4378588445, https://openalex.org/W2543035911, https://openalex.org/W3081018458, https://openalex.org/W2964350391, https://openalex.org/W2963446712, https://openalex.org/W4287370237 |
| referenced_works_count | 32 |
| abstract_inverted_index.a | 59, 82, 208, 218 |
| abstract_inverted_index.an | 117 |
| abstract_inverted_index.as | 29, 55, 121 |
| abstract_inverted_index.in | 6, 116, 131, 144, 158 |
| abstract_inverted_index.is | 70, 81 |
| abstract_inverted_index.no | 71 |
| abstract_inverted_index.of | 66, 104, 113, 200, 221 |
| abstract_inverted_index.on | 212 |
| abstract_inverted_index.or | 34, 129 |
| abstract_inverted_index.so | 79 |
| abstract_inverted_index.to | 75, 124, 196 |
| abstract_inverted_index.The | 85, 162 |
| abstract_inverted_index.and | 8, 16, 46, 63, 111, 138, 146, 224, 230, 246 |
| abstract_inverted_index.any | 102 |
| abstract_inverted_index.are | 2, 13, 25 |
| abstract_inverted_index.for | 58, 88, 249 |
| abstract_inverted_index.has | 41 |
| abstract_inverted_index.key | 165, 205 |
| abstract_inverted_index.may | 51 |
| abstract_inverted_index.mod | 40 |
| abstract_inverted_index.not | 26 |
| abstract_inverted_index.the | 56, 64, 77, 89, 97, 109, 140, 151, 159, 193, 240 |
| abstract_inverted_index.This | 106, 184, 202, 215 |
| abstract_inverted_index.When | 22, 234 |
| abstract_inverted_index.deep | 175, 188 |
| abstract_inverted_index.even | 43 |
| abstract_inverted_index.exam | 39, 142, 195 |
| abstract_inverted_index.four | 152, 198 |
| abstract_inverted_index.from | 127, 207 |
| abstract_inverted_index.have | 52 |
| abstract_inverted_index.held | 143 |
| abstract_inverted_index.like | 36 |
| abstract_inverted_index.more | 14, 44 |
| abstract_inverted_index.most | 153 |
| abstract_inverted_index.need | 57 |
| abstract_inverted_index.real | 219 |
| abstract_inverted_index.such | 28, 54, 120 |
| abstract_inverted_index.than | 18 |
| abstract_inverted_index.that | 93, 191 |
| abstract_inverted_index.they | 12 |
| abstract_inverted_index.this | 38 |
| abstract_inverted_index.type | 103 |
| abstract_inverted_index.with | 136, 178, 228 |
| abstract_inverted_index.After | 134 |
| abstract_inverted_index.based | 211 |
| abstract_inverted_index.every | 94 |
| abstract_inverted_index.exam, | 78 |
| abstract_inverted_index.exam. | 161 |
| abstract_inverted_index.exams | 1, 24, 50, 91 |
| abstract_inverted_index.found | 157 |
| abstract_inverted_index.frame | 169 |
| abstract_inverted_index.human | 72, 213 |
| abstract_inverted_index.major | 83 |
| abstract_inverted_index.model | 242 |
| abstract_inverted_index.other | 147, 244 |
| abstract_inverted_index.study | 107, 163, 185 |
| abstract_inverted_index.there | 69 |
| abstract_inverted_index.using | 101, 167, 236 |
| abstract_inverted_index.video | 194, 209 |
| abstract_inverted_index.Online | 0 |
| abstract_inverted_index.YOLOv5 | 241 |
| abstract_inverted_index.become | 42 |
| abstract_inverted_index.before | 172 |
| abstract_inverted_index.common | 154 |
| abstract_inverted_index.during | 30 |
| abstract_inverted_index.exams, | 123, 149 |
| abstract_inverted_index.exams. | 21 |
| abstract_inverted_index.frames | 166, 206 |
| abstract_inverted_index.method | 203 |
| abstract_inverted_index.models | 190 |
| abstract_inverted_index.neural | 181 |
| abstract_inverted_index.online | 49, 90, 122, 141, 148, 160 |
| abstract_inverted_index.Because | 68 |
| abstract_inverted_index.analyze | 192 |
| abstract_inverted_index.because | 11 |
| abstract_inverted_index.dataset | 220 |
| abstract_inverted_index.ensures | 92 |
| abstract_inverted_index.experts | 137 |
| abstract_inverted_index.floods, | 31 |
| abstract_inverted_index.growing | 3 |
| abstract_inverted_index.models. | 233 |
| abstract_inverted_index.monitor | 76 |
| abstract_inverted_index.motion. | 214 |
| abstract_inverted_index.network | 182 |
| abstract_inverted_index.popular | 5, 45 |
| abstract_inverted_index.present | 74 |
| abstract_inverted_index.prevent | 125 |
| abstract_inverted_index.process | 99 |
| abstract_inverted_index.several | 187 |
| abstract_inverted_index.student | 95 |
| abstract_inverted_index.unusual | 114, 251 |
| abstract_inverted_index.various | 179 |
| abstract_inverted_index.without | 100 |
| abstract_inverted_index.Covid-19 | 145 |
| abstract_inverted_index.However, | 48 |
| abstract_inverted_index.academic | 118 |
| abstract_inverted_index.advanced | 174 |
| abstract_inverted_index.behavior | 115 |
| abstract_inverted_index.cheating | 80, 128, 155, 222 |
| abstract_inverted_index.classify | 197 |
| abstract_inverted_index.concern. | 84 |
| abstract_inverted_index.employed | 87 |
| abstract_inverted_index.engaging | 130 |
| abstract_inverted_index.extracts | 164, 204 |
| abstract_inverted_index.flexible | 15 |
| abstract_inverted_index.internet | 61 |
| abstract_inverted_index.learning | 176 |
| abstract_inverted_index.presents | 186 |
| abstract_inverted_index.reliable | 60 |
| abstract_inverted_index.research | 216 |
| abstract_inverted_index.selected | 150 |
| abstract_inverted_index.setting, | 119 |
| abstract_inverted_index.standard | 237 |
| abstract_inverted_index.students | 126 |
| abstract_inverted_index.COVID-19, | 37 |
| abstract_inverted_index.activity. | 252 |
| abstract_inverted_index.behavior. | 133 |
| abstract_inverted_index.cheating. | 67, 105, 201 |
| abstract_inverted_index.conducted | 225 |
| abstract_inverted_index.criteria, | 239 |
| abstract_inverted_index.detecting | 250 |
| abstract_inverted_index.detection | 110 |
| abstract_inverted_index.developed | 217 |
| abstract_inverted_index.employing | 173 |
| abstract_inverted_index.evaluated | 235 |
| abstract_inverted_index.finalizes | 96 |
| abstract_inverted_index.pandemics | 35 |
| abstract_inverted_index.possible, | 27 |
| abstract_inverted_index.reviewing | 139 |
| abstract_inverted_index.suggested | 231 |
| abstract_inverted_index.unethical | 132 |
| abstract_inverted_index.activities | 156 |
| abstract_inverted_index.approaches | 248 |
| abstract_inverted_index.behaviours | 223 |
| abstract_inverted_index.categories | 199 |
| abstract_inverted_index.connection | 62 |
| abstract_inverted_index.consulting | 135 |
| abstract_inverted_index.evaluation | 98 |
| abstract_inverted_index.extraction | 170 |
| abstract_inverted_index.fine-tuned | 247 |
| abstract_inverted_index.important. | 47 |
| abstract_inverted_index.institutes | 10 |
| abstract_inverted_index.supervisor | 73 |
| abstract_inverted_index.techniques | 171, 177 |
| abstract_inverted_index.unexpected | 32 |
| abstract_inverted_index.educational | 9 |
| abstract_inverted_index.environment | 86 |
| abstract_inverted_index.experiments | 227 |
| abstract_inverted_index.outperforms | 243 |
| abstract_inverted_index.paper-based | 20 |
| abstract_inverted_index.performance | 238 |
| abstract_inverted_index.possibility | 65 |
| abstract_inverted_index.pre-trained | 229, 245 |
| abstract_inverted_index.recognition | 112 |
| abstract_inverted_index.situations, | 33 |
| abstract_inverted_index.conventional | 19 |
| abstract_inverted_index.face-to-face | 23 |
| abstract_inverted_index.increasingly | 4 |
| abstract_inverted_index.investigates | 108 |
| abstract_inverted_index.motion-based | 168 |
| abstract_inverted_index.comprehensive | 226 |
| abstract_inverted_index.convolutional | 180 |
| abstract_inverted_index.deep-learning | 232 |
| abstract_inverted_index.difficulties, | 53 |
| abstract_inverted_index.organizations | 7 |
| abstract_inverted_index.cost-effective | 17 |
| abstract_inverted_index.learning-based | 189 |
| abstract_inverted_index.configurations. | 183 |
| abstract_inverted_index.sequence/stream | 210 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.96341767 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |