Effects of calibration methods on quantitative material decomposition in photon‐counting spectral computed tomography using a maximum a posteriori estimator Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.1002/mp.12457
Purpose Advances in photon‐counting detectors have enabled quantitative material decomposition using multi‐energy or spectral computed tomography ( CT ). Supervised methods for material decomposition utilize an estimated attenuation for each material of interest at each photon energy level, which must be calibrated based upon calculated or measured values for known compositions. Measurements using a calibration phantom can advantageously account for system‐specific noise, but the effect of calibration methods on the material basis matrix and subsequent quantitative material decomposition has not been experimentally investigated. Therefore, the objective of this study was to investigate the influence of the range and number of contrast agent concentrations within a modular calibration phantom on the accuracy of quantitative material decomposition in the image domain. Methods Gadolinium was chosen as a model contrast agent in imaging phantoms, which also contained bone tissue and water as negative controls. The maximum gadolinium concentration (30, 60, and 90 mM ) and total number of concentrations (2, 4, and 7) were independently varied to systematically investigate effects of the material basis matrix and scaling factor calibration on the quantitative (root mean squared error, RMSE ) and spatial (sensitivity and specificity) accuracy of material decomposition. Images of calibration and sample phantoms were acquired using a commercially available photon‐counting spectral micro‐ CT system with five energy bins selected to normalize photon counts and leverage the contrast agent k ‐edge. Material decomposition of gadolinium, calcium, and water was performed for each calibration method using a maximum a posteriori estimator. Results Both the quantitative and spatial accuracy of material decomposition were most improved by using an increased maximum gadolinium concentration (range) in the basis matrix calibration; the effects of using a greater number of concentrations were relatively small in magnitude by comparison. The material basis matrix calibration was more sensitive to changes in the calibration methods than the scaling factor calibration. The material basis matrix calibration significantly influenced both the quantitative and spatial accuracy of material decomposition, while the scaling factor calibration influenced quantitative but not spatial accuracy. Importantly, the median RMSE of material decomposition was as low as ~1.5 mM (~0.24 mg/ mL gadolinium), which was similar in magnitude to that measured by optical spectroscopy on the same samples. Conclusion The accuracy of quantitative material decomposition in photon‐counting spectral CT was significantly influenced by calibration methods which must therefore be carefully considered for the intended diagnostic imaging application.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1002/mp.12457
- OA Status
- green
- Cited By
- 10
- References
- 32
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2724486790
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2724486790Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1002/mp.12457Digital Object Identifier
- Title
-
Effects of calibration methods on quantitative material decomposition in photon‐counting spectral computed tomography using a maximum a posteriori estimatorWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-07-06Full publication date if available
- Authors
-
Tyler E. Curtis, Ryan K. RoederList of authors in order
- Landing page
-
https://doi.org/10.1002/mp.12457Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://figshare.com/articles/journal_contribution/Effects_of_calibration_methods_on_quantitative_material_decomposition_in_photon_counting_spectral_computed_tomography_using_a_maximum_a_posteriori_estimator/24823617Direct OA link when available
- Concepts
-
Imaging phantom, Calibration, Photon counting, Estimator, Materials science, Medical imaging, Attenuation, Optics, Photon, Mathematics, Physics, Statistics, Computer science, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
10Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2020: 4, 2019: 4, 2018: 1Per-year citation counts (last 5 years)
- References (count)
-
32Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2724486790 |
|---|---|
| doi | https://doi.org/10.1002/mp.12457 |
| ids.doi | https://doi.org/10.1002/mp.12457 |
| ids.mag | 2724486790 |
| ids.openalex | https://openalex.org/W2724486790 |
| fwci | 1.24679361 |
| type | article |
| title | Effects of calibration methods on quantitative material decomposition in photon‐counting spectral computed tomography using a maximum a posteriori estimator |
| awards[0].id | https://openalex.org/G1969426360 |
| awards[0].funder_id | https://openalex.org/F4320306076 |
| awards[0].display_name | |
| awards[0].funder_award_id | DMR‐1309587 |
| awards[0].funder_display_name | National Science Foundation |
| biblio.issue | 10 |
| biblio.volume | 44 |
| biblio.last_page | 5197 |
| biblio.first_page | 5187 |
| topics[0].id | https://openalex.org/T12386 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Advanced X-ray and CT Imaging |
| topics[1].id | https://openalex.org/T10844 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9972000122070312 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Radiation Dose and Imaging |
| topics[2].id | https://openalex.org/T11363 |
| topics[2].field.id | https://openalex.org/fields/35 |
| topics[2].field.display_name | Dentistry |
| topics[2].score | 0.9822999835014343 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3504 |
| topics[2].subfield.display_name | Oral Surgery |
| topics[2].display_name | Dental Radiography and Imaging |
| funders[0].id | https://openalex.org/F4320306076 |
| funders[0].ror | https://ror.org/021nxhr62 |
| funders[0].display_name | National Science Foundation |
| funders[1].id | https://openalex.org/F4320310260 |
| funders[1].ror | https://ror.org/00mkhxb43 |
| funders[1].display_name | University of Notre Dame |
| is_xpac | False |
| apc_list.value | 3040 |
| apc_list.currency | USD |
| apc_list.value_usd | 3040 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C104293457 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7491227388381958 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q28324852 |
| concepts[0].display_name | Imaging phantom |
| concepts[1].id | https://openalex.org/C165838908 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6303529739379883 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q736777 |
| concepts[1].display_name | Calibration |
| concepts[2].id | https://openalex.org/C2781402376 |
| concepts[2].level | 3 |
| concepts[2].score | 0.4656912088394165 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17126172 |
| concepts[2].display_name | Photon counting |
| concepts[3].id | https://openalex.org/C185429906 |
| concepts[3].level | 2 |
| concepts[3].score | 0.44125986099243164 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[3].display_name | Estimator |
| concepts[4].id | https://openalex.org/C192562407 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4274812340736389 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[4].display_name | Materials science |
| concepts[5].id | https://openalex.org/C31601959 |
| concepts[5].level | 2 |
| concepts[5].score | 0.42110446095466614 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q931309 |
| concepts[5].display_name | Medical imaging |
| concepts[6].id | https://openalex.org/C184652730 |
| concepts[6].level | 2 |
| concepts[6].score | 0.41662418842315674 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2357982 |
| concepts[6].display_name | Attenuation |
| concepts[7].id | https://openalex.org/C120665830 |
| concepts[7].level | 1 |
| concepts[7].score | 0.34511908888816833 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[7].display_name | Optics |
| concepts[8].id | https://openalex.org/C159317903 |
| concepts[8].level | 2 |
| concepts[8].score | 0.3206833302974701 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3198 |
| concepts[8].display_name | Photon |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.3200388252735138 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C121332964 |
| concepts[10].level | 0 |
| concepts[10].score | 0.22097140550613403 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[10].display_name | Physics |
| concepts[11].id | https://openalex.org/C105795698 |
| concepts[11].level | 1 |
| concepts[11].score | 0.1816801130771637 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[11].display_name | Statistics |
| concepts[12].id | https://openalex.org/C41008148 |
| concepts[12].level | 0 |
| concepts[12].score | 0.1778009831905365 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[12].display_name | Computer science |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.10986050963401794 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/imaging-phantom |
| keywords[0].score | 0.7491227388381958 |
| keywords[0].display_name | Imaging phantom |
| keywords[1].id | https://openalex.org/keywords/calibration |
| keywords[1].score | 0.6303529739379883 |
| keywords[1].display_name | Calibration |
| keywords[2].id | https://openalex.org/keywords/photon-counting |
| keywords[2].score | 0.4656912088394165 |
| keywords[2].display_name | Photon counting |
| keywords[3].id | https://openalex.org/keywords/estimator |
| keywords[3].score | 0.44125986099243164 |
| keywords[3].display_name | Estimator |
| keywords[4].id | https://openalex.org/keywords/materials-science |
| keywords[4].score | 0.4274812340736389 |
| keywords[4].display_name | Materials science |
| keywords[5].id | https://openalex.org/keywords/medical-imaging |
| keywords[5].score | 0.42110446095466614 |
| keywords[5].display_name | Medical imaging |
| keywords[6].id | https://openalex.org/keywords/attenuation |
| keywords[6].score | 0.41662418842315674 |
| keywords[6].display_name | Attenuation |
| keywords[7].id | https://openalex.org/keywords/optics |
| keywords[7].score | 0.34511908888816833 |
| keywords[7].display_name | Optics |
| keywords[8].id | https://openalex.org/keywords/photon |
| keywords[8].score | 0.3206833302974701 |
| keywords[8].display_name | Photon |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.3200388252735138 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/physics |
| keywords[10].score | 0.22097140550613403 |
| keywords[10].display_name | Physics |
| keywords[11].id | https://openalex.org/keywords/statistics |
| keywords[11].score | 0.1816801130771637 |
| keywords[11].display_name | Statistics |
| keywords[12].id | https://openalex.org/keywords/computer-science |
| keywords[12].score | 0.1778009831905365 |
| keywords[12].display_name | Computer science |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.10986050963401794 |
| keywords[13].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1002/mp.12457 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S95522064 |
| locations[0].source.issn | 0094-2405, 1522-8541, 2473-4209 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0094-2405 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Medical Physics |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Medical Physics |
| locations[0].landing_page_url | https://doi.org/10.1002/mp.12457 |
| locations[1].id | pmh:oai:figshare.com:article/24823617 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400572 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | OPAL (Open@LaTrobe) (La Trobe University) |
| locations[1].source.host_organization | https://openalex.org/I196829312 |
| locations[1].source.host_organization_name | La Trobe University |
| locations[1].source.host_organization_lineage | https://openalex.org/I196829312 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://figshare.com/articles/journal_contribution/Effects_of_calibration_methods_on_quantitative_material_decomposition_in_photon_counting_spectral_computed_tomography_using_a_maximum_a_posteriori_estimator/24823617 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5108622359 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Tyler E. Curtis |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I107639228 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556 USA |
| authorships[0].institutions[0].id | https://openalex.org/I107639228 |
| authorships[0].institutions[0].ror | https://ror.org/00mkhxb43 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I107639228 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Notre Dame |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tyler E. Curtis |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556 USA |
| authorships[1].author.id | https://openalex.org/A5055411404 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1576-6570 |
| authorships[1].author.display_name | Ryan K. Roeder |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I107639228 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556 USA |
| authorships[1].institutions[0].id | https://openalex.org/I107639228 |
| authorships[1].institutions[0].ror | https://ror.org/00mkhxb43 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I107639228 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Notre Dame |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Ryan K. Roeder |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556 USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://figshare.com/articles/journal_contribution/Effects_of_calibration_methods_on_quantitative_material_decomposition_in_photon_counting_spectral_computed_tomography_using_a_maximum_a_posteriori_estimator/24823617 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2017-07-14T00:00:00 |
| display_name | Effects of calibration methods on quantitative material decomposition in photon‐counting spectral computed tomography using a maximum a posteriori estimator |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12386 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Advanced X-ray and CT Imaging |
| related_works | https://openalex.org/W2062605435, https://openalex.org/W2273182195, https://openalex.org/W2186374051, https://openalex.org/W2417440389, https://openalex.org/W2059332403, https://openalex.org/W2767089762, https://openalex.org/W4385556839, https://openalex.org/W2377963109, https://openalex.org/W2022279172, https://openalex.org/W4378746257 |
| cited_by_count | 10 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2020 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2019 |
| counts_by_year[2].cited_by_count | 4 |
| counts_by_year[3].year | 2018 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:figshare.com:article/24823617 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400572 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | OPAL (Open@LaTrobe) (La Trobe University) |
| best_oa_location.source.host_organization | https://openalex.org/I196829312 |
| best_oa_location.source.host_organization_name | La Trobe University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I196829312 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://figshare.com/articles/journal_contribution/Effects_of_calibration_methods_on_quantitative_material_decomposition_in_photon_counting_spectral_computed_tomography_using_a_maximum_a_posteriori_estimator/24823617 |
| primary_location.id | doi:10.1002/mp.12457 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S95522064 |
| primary_location.source.issn | 0094-2405, 1522-8541, 2473-4209 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0094-2405 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Medical Physics |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Medical Physics |
| primary_location.landing_page_url | https://doi.org/10.1002/mp.12457 |
| publication_date | 2017-07-06 |
| publication_year | 2017 |
| referenced_works | https://openalex.org/W2128655898, https://openalex.org/W1535813017, https://openalex.org/W2157666152, https://openalex.org/W2077443726, https://openalex.org/W1762697187, https://openalex.org/W1974963207, https://openalex.org/W1987719059, https://openalex.org/W1969130770, https://openalex.org/W2013586450, https://openalex.org/W6638923555, https://openalex.org/W2527682248, https://openalex.org/W1972037630, https://openalex.org/W2028959357, https://openalex.org/W2143684211, https://openalex.org/W2300533347, https://openalex.org/W2300237018, https://openalex.org/W2120096152, https://openalex.org/W2005987054, https://openalex.org/W2326737534, https://openalex.org/W2098471710, https://openalex.org/W2016982708, https://openalex.org/W2096007442, https://openalex.org/W2395555735, https://openalex.org/W2092141750, https://openalex.org/W2580596720, https://openalex.org/W1848347489, https://openalex.org/W2734739839, https://openalex.org/W3106114270, https://openalex.org/W1562347861, https://openalex.org/W1993158513, https://openalex.org/W4206227007, https://openalex.org/W2156033855 |
| referenced_works_count | 32 |
| abstract_inverted_index.( | 16 |
| abstract_inverted_index.) | 150, 184 |
| abstract_inverted_index.a | 53, 104, 124, 203, 241, 243, 276 |
| abstract_inverted_index.k | 225 |
| abstract_inverted_index.). | 18 |
| abstract_inverted_index.4, | 157 |
| abstract_inverted_index.7) | 159 |
| abstract_inverted_index.90 | 148 |
| abstract_inverted_index.CT | 17, 209, 376 |
| abstract_inverted_index.an | 25, 261 |
| abstract_inverted_index.as | 123, 138, 342, 344 |
| abstract_inverted_index.at | 33 |
| abstract_inverted_index.be | 40, 386 |
| abstract_inverted_index.by | 259, 286, 359, 380 |
| abstract_inverted_index.in | 2, 115, 128, 267, 284, 298, 354, 373 |
| abstract_inverted_index.mL | 349 |
| abstract_inverted_index.mM | 149, 346 |
| abstract_inverted_index.of | 31, 65, 86, 94, 99, 111, 154, 167, 191, 195, 229, 253, 274, 279, 320, 338, 369 |
| abstract_inverted_index.on | 68, 108, 176, 362 |
| abstract_inverted_index.or | 12, 45 |
| abstract_inverted_index.to | 90, 163, 216, 296, 356 |
| abstract_inverted_index.(2, | 156 |
| abstract_inverted_index.60, | 146 |
| abstract_inverted_index.The | 141, 288, 307, 367 |
| abstract_inverted_index.and | 73, 97, 136, 147, 151, 158, 172, 185, 188, 197, 220, 232, 250, 317 |
| abstract_inverted_index.but | 62, 330 |
| abstract_inverted_index.can | 56 |
| abstract_inverted_index.for | 21, 28, 48, 59, 236, 389 |
| abstract_inverted_index.has | 78 |
| abstract_inverted_index.low | 343 |
| abstract_inverted_index.mg/ | 348 |
| abstract_inverted_index.not | 79, 331 |
| abstract_inverted_index.the | 63, 69, 84, 92, 95, 109, 116, 168, 177, 222, 248, 268, 272, 299, 303, 315, 324, 335, 363, 390 |
| abstract_inverted_index.was | 89, 121, 234, 293, 341, 352, 377 |
| abstract_inverted_index.(30, | 145 |
| abstract_inverted_index.Both | 247 |
| abstract_inverted_index.RMSE | 183, 337 |
| abstract_inverted_index.also | 132 |
| abstract_inverted_index.been | 80 |
| abstract_inverted_index.bins | 214 |
| abstract_inverted_index.bone | 134 |
| abstract_inverted_index.both | 314 |
| abstract_inverted_index.each | 29, 34, 237 |
| abstract_inverted_index.five | 212 |
| abstract_inverted_index.have | 5 |
| abstract_inverted_index.mean | 180 |
| abstract_inverted_index.more | 294 |
| abstract_inverted_index.most | 257 |
| abstract_inverted_index.must | 39, 384 |
| abstract_inverted_index.same | 364 |
| abstract_inverted_index.than | 302 |
| abstract_inverted_index.that | 357 |
| abstract_inverted_index.this | 87 |
| abstract_inverted_index.upon | 43 |
| abstract_inverted_index.were | 160, 200, 256, 281 |
| abstract_inverted_index.with | 211 |
| abstract_inverted_index.~1.5 | 345 |
| abstract_inverted_index.(root | 179 |
| abstract_inverted_index.agent | 101, 127, 224 |
| abstract_inverted_index.based | 42 |
| abstract_inverted_index.basis | 71, 170, 269, 290, 309 |
| abstract_inverted_index.image | 117 |
| abstract_inverted_index.known | 49 |
| abstract_inverted_index.model | 125 |
| abstract_inverted_index.range | 96 |
| abstract_inverted_index.small | 283 |
| abstract_inverted_index.study | 88 |
| abstract_inverted_index.total | 152 |
| abstract_inverted_index.using | 10, 52, 202, 240, 260, 275 |
| abstract_inverted_index.water | 137, 233 |
| abstract_inverted_index.which | 38, 131, 351, 383 |
| abstract_inverted_index.while | 323 |
| abstract_inverted_index.(~0.24 | 347 |
| abstract_inverted_index.Images | 194 |
| abstract_inverted_index.chosen | 122 |
| abstract_inverted_index.counts | 219 |
| abstract_inverted_index.effect | 64 |
| abstract_inverted_index.energy | 36, 213 |
| abstract_inverted_index.error, | 182 |
| abstract_inverted_index.factor | 174, 305, 326 |
| abstract_inverted_index.level, | 37 |
| abstract_inverted_index.matrix | 72, 171, 270, 291, 310 |
| abstract_inverted_index.median | 336 |
| abstract_inverted_index.method | 239 |
| abstract_inverted_index.noise, | 61 |
| abstract_inverted_index.number | 98, 153, 278 |
| abstract_inverted_index.photon | 35, 218 |
| abstract_inverted_index.sample | 198 |
| abstract_inverted_index.system | 210 |
| abstract_inverted_index.tissue | 135 |
| abstract_inverted_index.values | 47 |
| abstract_inverted_index.varied | 162 |
| abstract_inverted_index.within | 103 |
| abstract_inverted_index.(range) | 266 |
| abstract_inverted_index.Methods | 119 |
| abstract_inverted_index.Purpose | 0 |
| abstract_inverted_index.Results | 246 |
| abstract_inverted_index.account | 58 |
| abstract_inverted_index.changes | 297 |
| abstract_inverted_index.domain. | 118 |
| abstract_inverted_index.effects | 166, 273 |
| abstract_inverted_index.enabled | 6 |
| abstract_inverted_index.greater | 277 |
| abstract_inverted_index.imaging | 129, 393 |
| abstract_inverted_index.maximum | 142, 242, 263 |
| abstract_inverted_index.methods | 20, 67, 301, 382 |
| abstract_inverted_index.modular | 105 |
| abstract_inverted_index.optical | 360 |
| abstract_inverted_index.phantom | 55, 107 |
| abstract_inverted_index.scaling | 173, 304, 325 |
| abstract_inverted_index.similar | 353 |
| abstract_inverted_index.spatial | 186, 251, 318, 332 |
| abstract_inverted_index.squared | 181 |
| abstract_inverted_index.utilize | 24 |
| abstract_inverted_index.Advances | 1 |
| abstract_inverted_index.Material | 227 |
| abstract_inverted_index.accuracy | 110, 190, 252, 319, 368 |
| abstract_inverted_index.acquired | 201 |
| abstract_inverted_index.calcium, | 231 |
| abstract_inverted_index.computed | 14 |
| abstract_inverted_index.contrast | 100, 126, 223 |
| abstract_inverted_index.improved | 258 |
| abstract_inverted_index.intended | 391 |
| abstract_inverted_index.interest | 32 |
| abstract_inverted_index.leverage | 221 |
| abstract_inverted_index.material | 8, 22, 30, 70, 76, 113, 169, 192, 254, 289, 308, 321, 339, 371 |
| abstract_inverted_index.measured | 46, 358 |
| abstract_inverted_index.micro‐ | 208 |
| abstract_inverted_index.negative | 139 |
| abstract_inverted_index.phantoms | 199 |
| abstract_inverted_index.samples. | 365 |
| abstract_inverted_index.selected | 215 |
| abstract_inverted_index.spectral | 13, 207, 375 |
| abstract_inverted_index.‐edge. | 226 |
| abstract_inverted_index.accuracy. | 333 |
| abstract_inverted_index.available | 205 |
| abstract_inverted_index.carefully | 387 |
| abstract_inverted_index.contained | 133 |
| abstract_inverted_index.controls. | 140 |
| abstract_inverted_index.detectors | 4 |
| abstract_inverted_index.estimated | 26 |
| abstract_inverted_index.increased | 262 |
| abstract_inverted_index.influence | 93 |
| abstract_inverted_index.magnitude | 285, 355 |
| abstract_inverted_index.normalize | 217 |
| abstract_inverted_index.objective | 85 |
| abstract_inverted_index.performed | 235 |
| abstract_inverted_index.phantoms, | 130 |
| abstract_inverted_index.sensitive | 295 |
| abstract_inverted_index.therefore | 385 |
| abstract_inverted_index.Conclusion | 366 |
| abstract_inverted_index.Gadolinium | 120 |
| abstract_inverted_index.Supervised | 19 |
| abstract_inverted_index.Therefore, | 83 |
| abstract_inverted_index.calculated | 44 |
| abstract_inverted_index.calibrated | 41 |
| abstract_inverted_index.considered | 388 |
| abstract_inverted_index.diagnostic | 392 |
| abstract_inverted_index.estimator. | 245 |
| abstract_inverted_index.gadolinium | 143, 264 |
| abstract_inverted_index.influenced | 313, 328, 379 |
| abstract_inverted_index.posteriori | 244 |
| abstract_inverted_index.relatively | 282 |
| abstract_inverted_index.subsequent | 74 |
| abstract_inverted_index.tomography | 15 |
| abstract_inverted_index.attenuation | 27 |
| abstract_inverted_index.calibration | 54, 66, 106, 175, 196, 238, 292, 300, 311, 327, 381 |
| abstract_inverted_index.comparison. | 287 |
| abstract_inverted_index.gadolinium, | 230 |
| abstract_inverted_index.investigate | 91, 165 |
| abstract_inverted_index.(sensitivity | 187 |
| abstract_inverted_index.Importantly, | 334 |
| abstract_inverted_index.Measurements | 51 |
| abstract_inverted_index.application. | 394 |
| abstract_inverted_index.calibration. | 306 |
| abstract_inverted_index.calibration; | 271 |
| abstract_inverted_index.commercially | 204 |
| abstract_inverted_index.gadolinium), | 350 |
| abstract_inverted_index.quantitative | 7, 75, 112, 178, 249, 316, 329, 370 |
| abstract_inverted_index.specificity) | 189 |
| abstract_inverted_index.spectroscopy | 361 |
| abstract_inverted_index.compositions. | 50 |
| abstract_inverted_index.concentration | 144, 265 |
| abstract_inverted_index.decomposition | 9, 23, 77, 114, 228, 255, 340, 372 |
| abstract_inverted_index.independently | 161 |
| abstract_inverted_index.investigated. | 82 |
| abstract_inverted_index.significantly | 312, 378 |
| abstract_inverted_index.advantageously | 57 |
| abstract_inverted_index.concentrations | 102, 155, 280 |
| abstract_inverted_index.decomposition, | 322 |
| abstract_inverted_index.decomposition. | 193 |
| abstract_inverted_index.experimentally | 81 |
| abstract_inverted_index.multi‐energy | 11 |
| abstract_inverted_index.systematically | 164 |
| abstract_inverted_index.photon‐counting | 3, 206, 374 |
| abstract_inverted_index.system‐specific | 60 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5055411404 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I107639228 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/6 |
| sustainable_development_goals[0].score | 0.4399999976158142 |
| sustainable_development_goals[0].display_name | Clean water and sanitation |
| citation_normalized_percentile.value | 0.76511499 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |