Efficient approximate unitary designs from random Pauli rotations Article Swipe
Related Concepts
Unitary state
Pauli exclusion principle
Mathematics
Algebra over a field
Pure mathematics
Physics
Quantum mechanics
Political science
Law
Jeongwan Haah
,
Yunchao Liu
,
Xinyu Tan
·
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2402.05239
· OA: W4391709356
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2402.05239
· OA: W4391709356
We construct random walks on simple Lie groups that quickly converge to the Haar measure for all moments up to order $t$. Specifically, a step of the walk on the unitary or orthognoal group of dimension $2^{\mathsf n}$ is a random Pauli rotation $e^{\mathrm i θP /2}$. The spectral gap of this random walk is shown to be $Ω(1/t)$, which coincides with the best previously known bound for a random walk on the permutation group on $\{0,1\}^{\mathsf n}$. This implies that the walk gives an $\varepsilon$-approximate unitary $t$-design in depth $O(\mathsf n t^2 + t \log 1/\varepsilon)d$ where $d=O(\log \mathsf n)$ is the circuit depth to implement $e^{\mathrm i θP /2}$. Our simple proof uses quadratic Casimir operators of Lie algebras.
Related Topics
Finding more related topics…